In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites
Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2010-04, Vol.21 (4), p.1321-1328 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1328 |
---|---|
container_issue | 4 |
container_start_page | 1321 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 21 |
creator | Ye, Xinyu Chen, Minfang Yang, Meng Wei, Jun Liu, Debao |
description | Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/
n
-HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential (
E
corr
) of MMC increases to −1.615 V and its polarization resistance (
R
p
) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10
4
/l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days (
P |
doi_str_mv | 10.1007/s10856-009-3954-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745926167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002767151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhAbigCAn1lDK2M3ZyRBWUSq24wIWL5Th2cZXYi52tyI134A37JHW0C5WQkLjYh_n-8Xg-Ql5SOKUA8m2m0KKoAbqad9jU_BHZUJS8blrePiYb6FDWDXI4Is9yvgGApkN8So4YAGVSsg2ZLkJ16-cUKxNTitnHUCWbfZ51MLbSYajMMkcTp62efe9HPy9VdFXQIdbfliHFH4teS7MtOR9cTMYO1dX13c9fX8N6pGoNl86zzc_JE6fHbF8c7mPy5cP7z2cf68tP5xdn7y5rU4ada-x6I6Vu2eCk5cABUWuUgpne8sEiyB76Hq1uBNPoKHPGCicFGNN32rX8mJzs-25T_L6zeVaTz8aOow427rKSDXZMUCH_g-SSIQpWyNd_kTdxl0L5hmKsbLMRFAtE95Apu8zJOrVNftJpURTU6kztnaniTK3OFC-ZV4fGu36yw5_Eb0kFeHMAdDZ6dKmo8fmBY6IFiV3h2J7LpRSubXqY8N-v3wMPH7Jy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221274615</pqid></control><display><type>article</type><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</creator><creatorcontrib>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</creatorcontrib><description>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/
n
-HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential (
E
corr
) of MMC increases to −1.615 V and its polarization resistance (
R
p
) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10
4
/l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days (
P
<0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/
n
-HA composite can be potentially used as biodegradable bone fixation material.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-009-3954-3</identifier><identifier>PMID: 20012772</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Absorbable Implants ; Alloys - chemistry ; Animals ; Animals, Newborn ; Biological and medical sciences ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body Fluids - physiology ; Bone Substitutes - adverse effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Coated Materials, Biocompatible - adverse effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Composite materials ; Composites ; Corrosion ; Corrosion resistance ; Durapatite - adverse effects ; Durapatite - chemistry ; Durapatite - pharmacology ; Glass ; Magnesium ; Magnesium - adverse effects ; Magnesium - chemistry ; Magnesium - pharmacology ; Materials Science ; Materials Testing ; Medical sciences ; Nanocomposites - adverse effects ; Nanocomposites - chemistry ; Natural Materials ; Orthopedic Fixation Devices ; Osteoblasts - drug effects ; Osteoblasts - physiology ; Polymer Sciences ; Rats ; Rats, Sprague-Dawley ; Regenerative Medicine/Tissue Engineering ; Surface Properties ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Thin Films ; Zinc - adverse effects ; Zinc - chemistry ; Zinc - pharmacology ; Zirconium - adverse effects ; Zirconium - chemistry ; Zirconium - pharmacology</subject><ispartof>Journal of materials science. Materials in medicine, 2010-04, Vol.21 (4), p.1321-1328</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</citedby><cites>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-009-3954-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-009-3954-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22680759$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20012772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Chen, Minfang</creatorcontrib><creatorcontrib>Yang, Meng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Liu, Debao</creatorcontrib><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/
n
-HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential (
E
corr
) of MMC increases to −1.615 V and its polarization resistance (
R
p
) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10
4
/l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days (
P
<0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/
n
-HA composite can be potentially used as biodegradable bone fixation material.</description><subject>Absorbable Implants</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body Fluids - physiology</subject><subject>Bone Substitutes - adverse effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coated Materials, Biocompatible - adverse effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Durapatite - adverse effects</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Glass</subject><subject>Magnesium</subject><subject>Magnesium - adverse effects</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - pharmacology</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Nanocomposites - adverse effects</subject><subject>Nanocomposites - chemistry</subject><subject>Natural Materials</subject><subject>Orthopedic Fixation Devices</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - physiology</subject><subject>Polymer Sciences</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Zinc - adverse effects</subject><subject>Zinc - chemistry</subject><subject>Zinc - pharmacology</subject><subject>Zirconium - adverse effects</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - pharmacology</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFu1DAQhi0EokvhAbigCAn1lDK2M3ZyRBWUSq24wIWL5Th2cZXYi52tyI134A37JHW0C5WQkLjYh_n-8Xg-Ql5SOKUA8m2m0KKoAbqad9jU_BHZUJS8blrePiYb6FDWDXI4Is9yvgGApkN8So4YAGVSsg2ZLkJ16-cUKxNTitnHUCWbfZ51MLbSYajMMkcTp62efe9HPy9VdFXQIdbfliHFH4teS7MtOR9cTMYO1dX13c9fX8N6pGoNl86zzc_JE6fHbF8c7mPy5cP7z2cf68tP5xdn7y5rU4ada-x6I6Vu2eCk5cABUWuUgpne8sEiyB76Hq1uBNPoKHPGCicFGNN32rX8mJzs-25T_L6zeVaTz8aOow427rKSDXZMUCH_g-SSIQpWyNd_kTdxl0L5hmKsbLMRFAtE95Apu8zJOrVNftJpURTU6kztnaniTK3OFC-ZV4fGu36yw5_Eb0kFeHMAdDZ6dKmo8fmBY6IFiV3h2J7LpRSubXqY8N-v3wMPH7Jy</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ye, Xinyu</creator><creator>Chen, Minfang</creator><creator>Yang, Meng</creator><creator>Wei, Jun</creator><creator>Liu, Debao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100401</creationdate><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><author>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorbable Implants</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body Fluids - physiology</topic><topic>Bone Substitutes - adverse effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coated Materials, Biocompatible - adverse effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Durapatite - adverse effects</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Glass</topic><topic>Magnesium</topic><topic>Magnesium - adverse effects</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - pharmacology</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Nanocomposites - adverse effects</topic><topic>Nanocomposites - chemistry</topic><topic>Natural Materials</topic><topic>Orthopedic Fixation Devices</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - physiology</topic><topic>Polymer Sciences</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Zinc - adverse effects</topic><topic>Zinc - chemistry</topic><topic>Zinc - pharmacology</topic><topic>Zirconium - adverse effects</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Chen, Minfang</creatorcontrib><creatorcontrib>Yang, Meng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Liu, Debao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xinyu</au><au>Chen, Minfang</au><au>Yang, Meng</au><au>Wei, Jun</au><au>Liu, Debao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>21</volume><issue>4</issue><spage>1321</spage><epage>1328</epage><pages>1321-1328</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/
n
-HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential (
E
corr
) of MMC increases to −1.615 V and its polarization resistance (
R
p
) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10
4
/l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days (
P
<0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/
n
-HA composite can be potentially used as biodegradable bone fixation material.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20012772</pmid><doi>10.1007/s10856-009-3954-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2010-04, Vol.21 (4), p.1321-1328 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_745926167 |
source | MEDLINE; SpringerNature Journals |
subjects | Absorbable Implants Alloys - chemistry Animals Animals, Newborn Biological and medical sciences Biomaterials Biomedical Engineering and Bioengineering Biomedical materials Body Fluids - physiology Bone Substitutes - adverse effects Bone Substitutes - chemistry Bone Substitutes - pharmacology Cells, Cultured Ceramics Chemistry and Materials Science Coated Materials, Biocompatible - adverse effects Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Composite materials Composites Corrosion Corrosion resistance Durapatite - adverse effects Durapatite - chemistry Durapatite - pharmacology Glass Magnesium Magnesium - adverse effects Magnesium - chemistry Magnesium - pharmacology Materials Science Materials Testing Medical sciences Nanocomposites - adverse effects Nanocomposites - chemistry Natural Materials Orthopedic Fixation Devices Osteoblasts - drug effects Osteoblasts - physiology Polymer Sciences Rats Rats, Sprague-Dawley Regenerative Medicine/Tissue Engineering Surface Properties Surfaces and Interfaces Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Thin Films Zinc - adverse effects Zinc - chemistry Zinc - pharmacology Zirconium - adverse effects Zirconium - chemistry Zirconium - pharmacology |
title | In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20corrosion%20resistance%20and%20cytocompatibility%20of%20nano-hydroxyapatite%20reinforced%20Mg%E2%80%93Zn%E2%80%93Zr%20composites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Ye,%20Xinyu&rft.date=2010-04-01&rft.volume=21&rft.issue=4&rft.spage=1321&rft.epage=1328&rft.pages=1321-1328&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-009-3954-3&rft_dat=%3Cproquest_cross%3E2002767151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221274615&rft_id=info:pmid/20012772&rfr_iscdi=true |