In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites

Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2010-04, Vol.21 (4), p.1321-1328
Hauptverfasser: Ye, Xinyu, Chen, Minfang, Yang, Meng, Wei, Jun, Liu, Debao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue 4
container_start_page 1321
container_title Journal of materials science. Materials in medicine
container_volume 21
creator Ye, Xinyu
Chen, Minfang
Yang, Meng
Wei, Jun
Liu, Debao
description Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/ n -HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential ( E corr ) of MMC increases to −1.615 V and its polarization resistance ( R p ) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10 4 /l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days ( P
doi_str_mv 10.1007/s10856-009-3954-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745926167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002767151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhAbigCAn1lDK2M3ZyRBWUSq24wIWL5Th2cZXYi52tyI134A37JHW0C5WQkLjYh_n-8Xg-Ql5SOKUA8m2m0KKoAbqad9jU_BHZUJS8blrePiYb6FDWDXI4Is9yvgGApkN8So4YAGVSsg2ZLkJ16-cUKxNTitnHUCWbfZ51MLbSYajMMkcTp62efe9HPy9VdFXQIdbfliHFH4teS7MtOR9cTMYO1dX13c9fX8N6pGoNl86zzc_JE6fHbF8c7mPy5cP7z2cf68tP5xdn7y5rU4ada-x6I6Vu2eCk5cABUWuUgpne8sEiyB76Hq1uBNPoKHPGCicFGNN32rX8mJzs-25T_L6zeVaTz8aOow427rKSDXZMUCH_g-SSIQpWyNd_kTdxl0L5hmKsbLMRFAtE95Apu8zJOrVNftJpURTU6kztnaniTK3OFC-ZV4fGu36yw5_Eb0kFeHMAdDZ6dKmo8fmBY6IFiV3h2J7LpRSubXqY8N-v3wMPH7Jy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221274615</pqid></control><display><type>article</type><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</creator><creatorcontrib>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</creatorcontrib><description>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/ n -HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential ( E corr ) of MMC increases to −1.615 V and its polarization resistance ( R p ) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10 4 /l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days ( P &lt;0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/ n -HA composite can be potentially used as biodegradable bone fixation material.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-009-3954-3</identifier><identifier>PMID: 20012772</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Absorbable Implants ; Alloys - chemistry ; Animals ; Animals, Newborn ; Biological and medical sciences ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body Fluids - physiology ; Bone Substitutes - adverse effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Cells, Cultured ; Ceramics ; Chemistry and Materials Science ; Coated Materials, Biocompatible - adverse effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Composite materials ; Composites ; Corrosion ; Corrosion resistance ; Durapatite - adverse effects ; Durapatite - chemistry ; Durapatite - pharmacology ; Glass ; Magnesium ; Magnesium - adverse effects ; Magnesium - chemistry ; Magnesium - pharmacology ; Materials Science ; Materials Testing ; Medical sciences ; Nanocomposites - adverse effects ; Nanocomposites - chemistry ; Natural Materials ; Orthopedic Fixation Devices ; Osteoblasts - drug effects ; Osteoblasts - physiology ; Polymer Sciences ; Rats ; Rats, Sprague-Dawley ; Regenerative Medicine/Tissue Engineering ; Surface Properties ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Thin Films ; Zinc - adverse effects ; Zinc - chemistry ; Zinc - pharmacology ; Zirconium - adverse effects ; Zirconium - chemistry ; Zirconium - pharmacology</subject><ispartof>Journal of materials science. Materials in medicine, 2010-04, Vol.21 (4), p.1321-1328</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</citedby><cites>FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-009-3954-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-009-3954-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22680759$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20012772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Chen, Minfang</creatorcontrib><creatorcontrib>Yang, Meng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Liu, Debao</creatorcontrib><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/ n -HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential ( E corr ) of MMC increases to −1.615 V and its polarization resistance ( R p ) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10 4 /l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days ( P &lt;0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/ n -HA composite can be potentially used as biodegradable bone fixation material.</description><subject>Absorbable Implants</subject><subject>Alloys - chemistry</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body Fluids - physiology</subject><subject>Bone Substitutes - adverse effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Cells, Cultured</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Coated Materials, Biocompatible - adverse effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Durapatite - adverse effects</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - pharmacology</subject><subject>Glass</subject><subject>Magnesium</subject><subject>Magnesium - adverse effects</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - pharmacology</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Nanocomposites - adverse effects</subject><subject>Nanocomposites - chemistry</subject><subject>Natural Materials</subject><subject>Orthopedic Fixation Devices</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - physiology</subject><subject>Polymer Sciences</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Zinc - adverse effects</subject><subject>Zinc - chemistry</subject><subject>Zinc - pharmacology</subject><subject>Zirconium - adverse effects</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - pharmacology</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFu1DAQhi0EokvhAbigCAn1lDK2M3ZyRBWUSq24wIWL5Th2cZXYi52tyI134A37JHW0C5WQkLjYh_n-8Xg-Ql5SOKUA8m2m0KKoAbqad9jU_BHZUJS8blrePiYb6FDWDXI4Is9yvgGApkN8So4YAGVSsg2ZLkJ16-cUKxNTitnHUCWbfZ51MLbSYajMMkcTp62efe9HPy9VdFXQIdbfliHFH4teS7MtOR9cTMYO1dX13c9fX8N6pGoNl86zzc_JE6fHbF8c7mPy5cP7z2cf68tP5xdn7y5rU4ada-x6I6Vu2eCk5cABUWuUgpne8sEiyB76Hq1uBNPoKHPGCicFGNN32rX8mJzs-25T_L6zeVaTz8aOow427rKSDXZMUCH_g-SSIQpWyNd_kTdxl0L5hmKsbLMRFAtE95Apu8zJOrVNftJpURTU6kztnaniTK3OFC-ZV4fGu36yw5_Eb0kFeHMAdDZ6dKmo8fmBY6IFiV3h2J7LpRSubXqY8N-v3wMPH7Jy</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ye, Xinyu</creator><creator>Chen, Minfang</creator><creator>Yang, Meng</creator><creator>Wei, Jun</creator><creator>Liu, Debao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100401</creationdate><title>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</title><author>Ye, Xinyu ; Chen, Minfang ; Yang, Meng ; Wei, Jun ; Liu, Debao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-59bc77a82df7e303055aa5762cbe3de507b0bb5ea462a5f12fce6f760ccb9af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorbable Implants</topic><topic>Alloys - chemistry</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body Fluids - physiology</topic><topic>Bone Substitutes - adverse effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Cells, Cultured</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Coated Materials, Biocompatible - adverse effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Durapatite - adverse effects</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - pharmacology</topic><topic>Glass</topic><topic>Magnesium</topic><topic>Magnesium - adverse effects</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - pharmacology</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Nanocomposites - adverse effects</topic><topic>Nanocomposites - chemistry</topic><topic>Natural Materials</topic><topic>Orthopedic Fixation Devices</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - physiology</topic><topic>Polymer Sciences</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Zinc - adverse effects</topic><topic>Zinc - chemistry</topic><topic>Zinc - pharmacology</topic><topic>Zirconium - adverse effects</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xinyu</creatorcontrib><creatorcontrib>Chen, Minfang</creatorcontrib><creatorcontrib>Yang, Meng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Liu, Debao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xinyu</au><au>Chen, Minfang</au><au>Yang, Meng</au><au>Wei, Jun</au><au>Liu, Debao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>21</volume><issue>4</issue><spage>1321</spage><epage>1328</epage><pages>1321-1328</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Due to good biocompatibility and mechanical properties, magnesium (Mg) and its alloys are considered promising degradable materials for orthopedic applications. In this work, a Mg metal matrix composite (MMC) was fabricated using Mg-2.9Zn-0.7Zr alloy as the matrix and 1 wt% nano-hydroxyapatite (n-HA) particles as reinforcements. In vitro corrosion behavior and cytocompatibility of a Mg–Zn–Zr/ n -HA composite and a Mg–Zn–Zr alloy were investigated. In contrast with the Mg–Zn–Zr alloy, the MMC has better properties. The average corrosion rate of MMC is 0.75 mm/yr after immersion in simulated body fluid (SBF) for 20 days, and the surface of MMC is covered with white Ca–P precipitates. The electrochemical test results show that the corrosion potential ( E corr ) of MMC increases to −1.615 V and its polarization resistance ( R p ) is 2.56 KΩ with the addition of n-HA particles. The co-cultivation of MMC with osteoblasts results in the adhesion and proliferation of cells on the surface of the composite. The maximum cell density is calculated to be (1.85±0.15) × 10 4 /l after 5 days of co-culture with osteoblasts. The average cell numbers for two groups after culturing for 3 and 5 days ( P &lt;0.05) are significantly different. All the results demonstrate that the Mg–Zn–Zr/ n -HA composite can be potentially used as biodegradable bone fixation material.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20012772</pmid><doi>10.1007/s10856-009-3954-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2010-04, Vol.21 (4), p.1321-1328
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_745926167
source MEDLINE; SpringerNature Journals
subjects Absorbable Implants
Alloys - chemistry
Animals
Animals, Newborn
Biological and medical sciences
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Body Fluids - physiology
Bone Substitutes - adverse effects
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Cells, Cultured
Ceramics
Chemistry and Materials Science
Coated Materials, Biocompatible - adverse effects
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Composite materials
Composites
Corrosion
Corrosion resistance
Durapatite - adverse effects
Durapatite - chemistry
Durapatite - pharmacology
Glass
Magnesium
Magnesium - adverse effects
Magnesium - chemistry
Magnesium - pharmacology
Materials Science
Materials Testing
Medical sciences
Nanocomposites - adverse effects
Nanocomposites - chemistry
Natural Materials
Orthopedic Fixation Devices
Osteoblasts - drug effects
Osteoblasts - physiology
Polymer Sciences
Rats
Rats, Sprague-Dawley
Regenerative Medicine/Tissue Engineering
Surface Properties
Surfaces and Interfaces
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Thin Films
Zinc - adverse effects
Zinc - chemistry
Zinc - pharmacology
Zirconium - adverse effects
Zirconium - chemistry
Zirconium - pharmacology
title In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20corrosion%20resistance%20and%20cytocompatibility%20of%20nano-hydroxyapatite%20reinforced%20Mg%E2%80%93Zn%E2%80%93Zr%20composites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Ye,%20Xinyu&rft.date=2010-04-01&rft.volume=21&rft.issue=4&rft.spage=1321&rft.epage=1328&rft.pages=1321-1328&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-009-3954-3&rft_dat=%3Cproquest_cross%3E2002767151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221274615&rft_id=info:pmid/20012772&rfr_iscdi=true