A compact high-order unstructured grids method for the solution of Euler equations

Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 1999-09, Vol.31 (1), p.121-147
Hauptverfasser: Agarwal, R.K., Halt, D.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 121
container_title International journal for numerical methods in fluids
container_volume 31
creator Agarwal, R.K.
Halt, D.W.
description Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0363(19990915)31:1<121::AID-FLD959>3.0.CO;2-S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745722050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26873137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</originalsourceid><addsrcrecordid>eNqFkV9v0zAUxS0EEqXwHfyAYHtIubabOC4IUWV_qKiotIKYeLlyHGfNSOvOTrTt25MoZTyAQH6wdPU75x7dQ8gHBhMGwN8crRfZ4piBkhGIRBwxpRQoFh8LNmPvGGez2XxxEp0tT1Ss3osJTLLVWx6tH5HRg-gxGQGXLOKd8Cl5FsI1ACieihG5mFPjtnttGrqprjaR84X1tN2Fxremab0t6JWvikC3ttm4gpbO02ZjaXB121RuR11JT9u609ibVveT8Jw8KXUd7IvDPyZfz06_ZB-j5ep8kc2XkREJV1FcasP1tNR5DEbmzBa5AZOkCdOpVnlepibPmZpqKCFNNde5SngH8TzhxiouxuT14Lv37qa1ocFtFYyta72zrg0op7HkHGLoyFf_JHmSSsGE7MDLATTeheBtiXtfbbW_RwbY14HY14H9ZbG_LP6qAwXD7nGG2NWBQx0oEDBbIcd1Z_3ykEEHo-vS652pwm9_lU77DGPyfcBuq9re_7H-v9v_uvww6cyjwbwKjb17MNf-ByZSyBi_fT7HWAK__HTRZ_4JzqK7Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26873137</pqid></control><display><type>article</type><title>A compact high-order unstructured grids method for the solution of Euler equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agarwal, R.K. ; Halt, D.W.</creator><creatorcontrib>Agarwal, R.K. ; Halt, D.W.</creatorcontrib><description>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/(SICI)1097-0363(19990915)31:1&lt;121::AID-FLD959&gt;3.0.CO;2-S</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation theory ; Compressible flows; shock and detonation phenomena ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Euler equations ; Exact sciences and technology ; Finite volume method ; Flow of fluids ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General subsonic flows ; high-order ; Numerical methods ; Physics ; Polynomials ; unstructured grids method</subject><ispartof>International journal for numerical methods in fluids, 1999-09, Vol.31 (1), p.121-147</ispartof><rights>Copyright © John Wiley &amp; Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0363%2819990915%2931%3A1%3C121%3A%3AAID-FLD959%3E3.0.CO%3B2-S$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0363%2819990915%2931%3A1%3C121%3A%3AAID-FLD959%3E3.0.CO%3B2-S$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1984731$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agarwal, R.K.</creatorcontrib><creatorcontrib>Halt, D.W.</creatorcontrib><title>A compact high-order unstructured grids method for the solution of Euler equations</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><subject>Approximation theory</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Flow of fluids</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General subsonic flows</subject><subject>high-order</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Polynomials</subject><subject>unstructured grids method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkV9v0zAUxS0EEqXwHfyAYHtIubabOC4IUWV_qKiotIKYeLlyHGfNSOvOTrTt25MoZTyAQH6wdPU75x7dQ8gHBhMGwN8crRfZ4piBkhGIRBwxpRQoFh8LNmPvGGez2XxxEp0tT1Ss3osJTLLVWx6tH5HRg-gxGQGXLOKd8Cl5FsI1ACieihG5mFPjtnttGrqprjaR84X1tN2Fxremab0t6JWvikC3ttm4gpbO02ZjaXB121RuR11JT9u609ibVveT8Jw8KXUd7IvDPyZfz06_ZB-j5ep8kc2XkREJV1FcasP1tNR5DEbmzBa5AZOkCdOpVnlepibPmZpqKCFNNde5SngH8TzhxiouxuT14Lv37qa1ocFtFYyta72zrg0op7HkHGLoyFf_JHmSSsGE7MDLATTeheBtiXtfbbW_RwbY14HY14H9ZbG_LP6qAwXD7nGG2NWBQx0oEDBbIcd1Z_3ykEEHo-vS652pwm9_lU77DGPyfcBuq9re_7H-v9v_uvww6cyjwbwKjb17MNf-ByZSyBi_fT7HWAK__HTRZ_4JzqK7Qw</recordid><startdate>19990915</startdate><enddate>19990915</enddate><creator>Agarwal, R.K.</creator><creator>Halt, D.W.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19990915</creationdate><title>A compact high-order unstructured grids method for the solution of Euler equations</title><author>Agarwal, R.K. ; Halt, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation theory</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Flow of fluids</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General subsonic flows</topic><topic>high-order</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Polynomials</topic><topic>unstructured grids method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, R.K.</creatorcontrib><creatorcontrib>Halt, D.W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, R.K.</au><au>Halt, D.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compact high-order unstructured grids method for the solution of Euler equations</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>1999-09-15</date><risdate>1999</risdate><volume>31</volume><issue>1</issue><spage>121</spage><epage>147</epage><pages>121-147</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1097-0363(19990915)31:1&lt;121::AID-FLD959&gt;3.0.CO;2-S</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 1999-09, Vol.31 (1), p.121-147
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_745722050
source Wiley Online Library Journals Frontfile Complete
subjects Approximation theory
Compressible flows
shock and detonation phenomena
Computational fluid dynamics
Computational methods in fluid dynamics
Euler equations
Exact sciences and technology
Finite volume method
Flow of fluids
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General subsonic flows
high-order
Numerical methods
Physics
Polynomials
unstructured grids method
title A compact high-order unstructured grids method for the solution of Euler equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compact%20high-order%20unstructured%20grids%20method%20for%20the%20solution%20of%20Euler%20equations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Agarwal,%20R.K.&rft.date=1999-09-15&rft.volume=31&rft.issue=1&rft.spage=121&rft.epage=147&rft.pages=121-147&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/(SICI)1097-0363(19990915)31:1%3C121::AID-FLD959%3E3.0.CO;2-S&rft_dat=%3Cproquest_cross%3E26873137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26873137&rft_id=info:pmid/&rfr_iscdi=true