A compact high-order unstructured grids method for the solution of Euler equations
Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represen...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 1999-09, Vol.31 (1), p.121-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | International journal for numerical methods in fluids |
container_volume | 31 |
creator | Agarwal, R.K. Halt, D.W. |
description | Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1097-0363(19990915)31:1<121::AID-FLD959>3.0.CO;2-S |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745722050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26873137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</originalsourceid><addsrcrecordid>eNqFkV9v0zAUxS0EEqXwHfyAYHtIubabOC4IUWV_qKiotIKYeLlyHGfNSOvOTrTt25MoZTyAQH6wdPU75x7dQ8gHBhMGwN8crRfZ4piBkhGIRBwxpRQoFh8LNmPvGGez2XxxEp0tT1Ss3osJTLLVWx6tH5HRg-gxGQGXLOKd8Cl5FsI1ACieihG5mFPjtnttGrqprjaR84X1tN2Fxremab0t6JWvikC3ttm4gpbO02ZjaXB121RuR11JT9u609ibVveT8Jw8KXUd7IvDPyZfz06_ZB-j5ep8kc2XkREJV1FcasP1tNR5DEbmzBa5AZOkCdOpVnlepibPmZpqKCFNNde5SngH8TzhxiouxuT14Lv37qa1ocFtFYyta72zrg0op7HkHGLoyFf_JHmSSsGE7MDLATTeheBtiXtfbbW_RwbY14HY14H9ZbG_LP6qAwXD7nGG2NWBQx0oEDBbIcd1Z_3ykEEHo-vS652pwm9_lU77DGPyfcBuq9re_7H-v9v_uvww6cyjwbwKjb17MNf-ByZSyBi_fT7HWAK__HTRZ_4JzqK7Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26873137</pqid></control><display><type>article</type><title>A compact high-order unstructured grids method for the solution of Euler equations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agarwal, R.K. ; Halt, D.W.</creator><creatorcontrib>Agarwal, R.K. ; Halt, D.W.</creatorcontrib><description>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/(SICI)1097-0363(19990915)31:1<121::AID-FLD959>3.0.CO;2-S</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation theory ; Compressible flows; shock and detonation phenomena ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Euler equations ; Exact sciences and technology ; Finite volume method ; Flow of fluids ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General subsonic flows ; high-order ; Numerical methods ; Physics ; Polynomials ; unstructured grids method</subject><ispartof>International journal for numerical methods in fluids, 1999-09, Vol.31 (1), p.121-147</ispartof><rights>Copyright © John Wiley & Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0363%2819990915%2931%3A1%3C121%3A%3AAID-FLD959%3E3.0.CO%3B2-S$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0363%2819990915%2931%3A1%3C121%3A%3AAID-FLD959%3E3.0.CO%3B2-S$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1984731$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agarwal, R.K.</creatorcontrib><creatorcontrib>Halt, D.W.</creatorcontrib><title>A compact high-order unstructured grids method for the solution of Euler equations</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley & Sons, Ltd.</description><subject>Approximation theory</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Flow of fluids</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General subsonic flows</subject><subject>high-order</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Polynomials</subject><subject>unstructured grids method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkV9v0zAUxS0EEqXwHfyAYHtIubabOC4IUWV_qKiotIKYeLlyHGfNSOvOTrTt25MoZTyAQH6wdPU75x7dQ8gHBhMGwN8crRfZ4piBkhGIRBwxpRQoFh8LNmPvGGez2XxxEp0tT1Ss3osJTLLVWx6tH5HRg-gxGQGXLOKd8Cl5FsI1ACieihG5mFPjtnttGrqprjaR84X1tN2Fxremab0t6JWvikC3ttm4gpbO02ZjaXB121RuR11JT9u609ibVveT8Jw8KXUd7IvDPyZfz06_ZB-j5ep8kc2XkREJV1FcasP1tNR5DEbmzBa5AZOkCdOpVnlepibPmZpqKCFNNde5SngH8TzhxiouxuT14Lv37qa1ocFtFYyta72zrg0op7HkHGLoyFf_JHmSSsGE7MDLATTeheBtiXtfbbW_RwbY14HY14H9ZbG_LP6qAwXD7nGG2NWBQx0oEDBbIcd1Z_3ykEEHo-vS652pwm9_lU77DGPyfcBuq9re_7H-v9v_uvww6cyjwbwKjb17MNf-ByZSyBi_fT7HWAK__HTRZ_4JzqK7Qw</recordid><startdate>19990915</startdate><enddate>19990915</enddate><creator>Agarwal, R.K.</creator><creator>Halt, D.W.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19990915</creationdate><title>A compact high-order unstructured grids method for the solution of Euler equations</title><author>Agarwal, R.K. ; Halt, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3629-5fac2a4fab50c7b1edbc0c6861a8a9bbf8cbb194a0f088a2ab962edb2b62ce923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation theory</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Flow of fluids</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General subsonic flows</topic><topic>high-order</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Polynomials</topic><topic>unstructured grids method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, R.K.</creatorcontrib><creatorcontrib>Halt, D.W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, R.K.</au><au>Halt, D.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compact high-order unstructured grids method for the solution of Euler equations</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>1999-09-15</date><risdate>1999</risdate><volume>31</volume><issue>1</issue><spage>121</spage><epage>147</epage><pages>121-147</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Two compact higher‐order methods are presented for solving the Euler equations in two dimensions. The flow domain is discretized by triangles. The methods use a characteristic‐based approach with a cell‐centered finite volume method. Polynomials of order 0 through 3 are used in each cell to represent the conservation flow variables. Solutions are demonstrated to achieve up to fourth‐order accuracy. Computations are presented for a variety of fluid flow applications. Numerical results demonstrate a substantial gain in efficiency using compact higher‐order elements over the lower‐order elements. Copyright © 1999 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/(SICI)1097-0363(19990915)31:1<121::AID-FLD959>3.0.CO;2-S</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 1999-09, Vol.31 (1), p.121-147 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_745722050 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation theory Compressible flows shock and detonation phenomena Computational fluid dynamics Computational methods in fluid dynamics Euler equations Exact sciences and technology Finite volume method Flow of fluids Fluid dynamics Fundamental areas of phenomenology (including applications) General subsonic flows high-order Numerical methods Physics Polynomials unstructured grids method |
title | A compact high-order unstructured grids method for the solution of Euler equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compact%20high-order%20unstructured%20grids%20method%20for%20the%20solution%20of%20Euler%20equations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Agarwal,%20R.K.&rft.date=1999-09-15&rft.volume=31&rft.issue=1&rft.spage=121&rft.epage=147&rft.pages=121-147&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/(SICI)1097-0363(19990915)31:1%3C121::AID-FLD959%3E3.0.CO;2-S&rft_dat=%3Cproquest_cross%3E26873137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26873137&rft_id=info:pmid/&rfr_iscdi=true |