Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator

Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2000, Vol.21 (2), p.429-443
Hauptverfasser: Rhim, W-K, Ishikawa, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 2
container_start_page 429
container_title International journal of thermophysics
container_volume 21
creator Rhim, W-K
Ishikawa, T
description Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by rho sub(liq) identical with 5.67x10 super(3)-0.542 (T-T sub(m)) kg times m super(-3) from 1150 to 1400 K with T sub(m) identical with 1211.3 K, the volume expansion coefficient by alpha identical with 0.9656x10 super(-4) K super(-1), and the hemispherical total emissivity at the melting temperature by epsilon sub(T, liq)(T sub(m)) identical with 0.17. Assuming constant epsilon sub(T, liq)(T) identical with 0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by sigma (T) identical with 583-0.08(T-T sub(m)) mN times m super(-1) and the temperature dependence of the electrical resistivity, when r sub(liq)(T sub(m)) identical with 60 mu Omega times cm is used as a reference point, can be expressed by r sub(e, liq)(T) identical with 60+1.18x10 super(-2)(T-1211.3) mu Omega times cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann-Franz-Lorenz law, is given by Kappa sub(liq)(T) identical with 49.43+2.90x10 super(-2)(T-T sub(m)) W times m super(-1) times K super(-1).
doi_str_mv 10.1023/A:1006639714415
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_745709667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745709667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-5efe2693ebabd6283906ad7670447e692220256e680a2dcc7f88df47e616cdb33</originalsourceid><addsrcrecordid>eNotTztPwzAY9AASpTCzemMKfLYTO2arKl5SJZYisVWO_aUxcuIQO0j99wTBdKd7SUfIDYM7Blzcbx4YgJRCK1aWrDojK2C6KjSvPy7IZUqfAKCVFivi9h1OfRy7U_LWBDpOccQpe0w0trSPIeNAj0vEDH7uaY8mzRM62pyooZ0_dkXGfmmYvMgUA9o8xZRN9pYG_PYLi9MVOW9NSHj9j2vy_vS4374Uu7fn1-1mV1jBRC4qbJFLLbAxjZO8FhqkcUoqKEuFUnPOgVcSZQ2GO2tVW9eu_bWYtK4RYk1u_3aXF18zpnzofbIYghkwzumgykqBllKJH51dWfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745709667</pqid></control><display><type>article</type><title>Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator</title><source>SpringerLink Journals</source><creator>Rhim, W-K ; Ishikawa, T</creator><creatorcontrib>Rhim, W-K ; Ishikawa, T</creatorcontrib><description>Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by rho sub(liq) identical with 5.67x10 super(3)-0.542 (T-T sub(m)) kg times m super(-3) from 1150 to 1400 K with T sub(m) identical with 1211.3 K, the volume expansion coefficient by alpha identical with 0.9656x10 super(-4) K super(-1), and the hemispherical total emissivity at the melting temperature by epsilon sub(T, liq)(T sub(m)) identical with 0.17. Assuming constant epsilon sub(T, liq)(T) identical with 0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by sigma (T) identical with 583-0.08(T-T sub(m)) mN times m super(-1) and the temperature dependence of the electrical resistivity, when r sub(liq)(T sub(m)) identical with 60 mu Omega times cm is used as a reference point, can be expressed by r sub(e, liq)(T) identical with 60+1.18x10 super(-2)(T-1211.3) mu Omega times cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann-Franz-Lorenz law, is given by Kappa sub(liq)(T) identical with 49.43+2.90x10 super(-2)(T-T sub(m)) W times m super(-1) times K super(-1).</description><identifier>ISSN: 0195-928X</identifier><identifier>DOI: 10.1023/A:1006639714415</identifier><language>eng</language><subject>Density measurement (specific gravity) ; Electric conductivity measurement ; Electrostatic devices ; Molten materials ; Specific heat of liquids ; Surface tension ; Thermal conductivity of liquids ; Thermal expansion ; Thermal variables measurement</subject><ispartof>International journal of thermophysics, 2000, Vol.21 (2), p.429-443</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-5efe2693ebabd6283906ad7670447e692220256e680a2dcc7f88df47e616cdb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Rhim, W-K</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><title>Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator</title><title>International journal of thermophysics</title><description>Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by rho sub(liq) identical with 5.67x10 super(3)-0.542 (T-T sub(m)) kg times m super(-3) from 1150 to 1400 K with T sub(m) identical with 1211.3 K, the volume expansion coefficient by alpha identical with 0.9656x10 super(-4) K super(-1), and the hemispherical total emissivity at the melting temperature by epsilon sub(T, liq)(T sub(m)) identical with 0.17. Assuming constant epsilon sub(T, liq)(T) identical with 0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by sigma (T) identical with 583-0.08(T-T sub(m)) mN times m super(-1) and the temperature dependence of the electrical resistivity, when r sub(liq)(T sub(m)) identical with 60 mu Omega times cm is used as a reference point, can be expressed by r sub(e, liq)(T) identical with 60+1.18x10 super(-2)(T-1211.3) mu Omega times cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann-Franz-Lorenz law, is given by Kappa sub(liq)(T) identical with 49.43+2.90x10 super(-2)(T-T sub(m)) W times m super(-1) times K super(-1).</description><subject>Density measurement (specific gravity)</subject><subject>Electric conductivity measurement</subject><subject>Electrostatic devices</subject><subject>Molten materials</subject><subject>Specific heat of liquids</subject><subject>Surface tension</subject><subject>Thermal conductivity of liquids</subject><subject>Thermal expansion</subject><subject>Thermal variables measurement</subject><issn>0195-928X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotTztPwzAY9AASpTCzemMKfLYTO2arKl5SJZYisVWO_aUxcuIQO0j99wTBdKd7SUfIDYM7Blzcbx4YgJRCK1aWrDojK2C6KjSvPy7IZUqfAKCVFivi9h1OfRy7U_LWBDpOccQpe0w0trSPIeNAj0vEDH7uaY8mzRM62pyooZ0_dkXGfmmYvMgUA9o8xZRN9pYG_PYLi9MVOW9NSHj9j2vy_vS4374Uu7fn1-1mV1jBRC4qbJFLLbAxjZO8FhqkcUoqKEuFUnPOgVcSZQ2GO2tVW9eu_bWYtK4RYk1u_3aXF18zpnzofbIYghkwzumgykqBllKJH51dWfY</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Rhim, W-K</creator><creator>Ishikawa, T</creator><scope>7TC</scope></search><sort><creationdate>2000</creationdate><title>Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator</title><author>Rhim, W-K ; Ishikawa, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-5efe2693ebabd6283906ad7670447e692220256e680a2dcc7f88df47e616cdb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Density measurement (specific gravity)</topic><topic>Electric conductivity measurement</topic><topic>Electrostatic devices</topic><topic>Molten materials</topic><topic>Specific heat of liquids</topic><topic>Surface tension</topic><topic>Thermal conductivity of liquids</topic><topic>Thermal expansion</topic><topic>Thermal variables measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhim, W-K</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhim, W-K</au><au>Ishikawa, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator</atitle><jtitle>International journal of thermophysics</jtitle><date>2000</date><risdate>2000</risdate><volume>21</volume><issue>2</issue><spage>429</spage><epage>443</epage><pages>429-443</pages><issn>0195-928X</issn><abstract>Thermophysical properties of molten germanium have been measured using the high-temperature electrostatic levitator at the Jet Propulsion Laboratory. Measured properties include the density, the thermal expansivity, the hemispherical total emissivity, the constant-pressure specific heat capacity, the surface tension, and the electrical resistivity. The measured density can be expressed by rho sub(liq) identical with 5.67x10 super(3)-0.542 (T-T sub(m)) kg times m super(-3) from 1150 to 1400 K with T sub(m) identical with 1211.3 K, the volume expansion coefficient by alpha identical with 0.9656x10 super(-4) K super(-1), and the hemispherical total emissivity at the melting temperature by epsilon sub(T, liq)(T sub(m)) identical with 0.17. Assuming constant epsilon sub(T, liq)(T) identical with 0.17 in the liquid range that has been investigated, the constant-pressure specific heat was evaluated as a function of temperature. The surface tension over the same temperature range can be expressed by sigma (T) identical with 583-0.08(T-T sub(m)) mN times m super(-1) and the temperature dependence of the electrical resistivity, when r sub(liq)(T sub(m)) identical with 60 mu Omega times cm is used as a reference point, can be expressed by r sub(e, liq)(T) identical with 60+1.18x10 super(-2)(T-1211.3) mu Omega times cm. The thermal conductivity, which was determined from the resistivity data using the Wiedemann-Franz-Lorenz law, is given by Kappa sub(liq)(T) identical with 49.43+2.90x10 super(-2)(T-T sub(m)) W times m super(-1) times K super(-1).</abstract><doi>10.1023/A:1006639714415</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2000, Vol.21 (2), p.429-443
issn 0195-928X
language eng
recordid cdi_proquest_miscellaneous_745709667
source SpringerLink Journals
subjects Density measurement (specific gravity)
Electric conductivity measurement
Electrostatic devices
Molten materials
Specific heat of liquids
Surface tension
Thermal conductivity of liquids
Thermal expansion
Thermal variables measurement
title Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20properties%20of%20molten%20germanium%20measured%20by%20a%20high-temperature%20electrostatic%20levitator&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Rhim,%20W-K&rft.date=2000&rft.volume=21&rft.issue=2&rft.spage=429&rft.epage=443&rft.pages=429-443&rft.issn=0195-928X&rft_id=info:doi/10.1023/A:1006639714415&rft_dat=%3Cproquest%3E745709667%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745709667&rft_id=info:pmid/&rfr_iscdi=true