Evaluating convective heat transfer coefficients using neural networks

Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 1996, Vol.39 (11), p.2329-2332
Hauptverfasser: Jambunathan, K., Hartle, S.L., Ashforth-Frost, S., Fontama, V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2332
container_issue 11
container_start_page 2329
container_title International journal of heat and mass transfer
container_volume 39
creator Jambunathan, K.
Hartle, S.L.
Ashforth-Frost, S.
Fontama, V.N.
description Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.
doi_str_mv 10.1016/0017-9310(95)00332-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745680063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0017931095003320</els_id><sourcerecordid>745680063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEMP4sdhdbL52M1FkNKqUPCi5xCzE41ud2uyW_Hfm7XFY0_DMM_7DjyEnFK4pkDlDQAtMsUoXCpxBcBYnsEeGdGyUFlOS7VPRv_IITmK8WNYgcsRmc_Wpu5N55u3iW2bNdrOr3HyjqabdME00WFIB3TOW49NFyd9HNgG-2DqNLrvNnzGY3LgTB3xZDvH5GU-e54-ZIun-8fp3SKzIi-6rLS8Kg3nheQVxQoQmQPlFFJnBVNGALMObSFVzgSnFpG_VhZy5pxTnHE2Jheb3lVov3qMnV76aLGuTYNtH3XBhSwBJEvk-U4ylzynOVUJ5BvQhjbGgE6vgl-a8KMp6EGvHmTpwZ1WQv_p1ZBiZ9t-E62pXXJlffzPMpBSMJGw2w2GycraY9Bx8Gix8iG51lXrd__5BcSsjpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26421219</pqid></control><display><type>article</type><title>Evaluating convective heat transfer coefficients using neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</creator><creatorcontrib>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</creatorcontrib><description>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/0017-9310(95)00332-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Backpropagation ; Boundary conditions ; Energy ; Energy. Thermal use of fuels ; Errors ; Exact sciences and technology ; Heat conduction ; Heat transfer ; Image processing ; Liquid crystals ; Mathematical models ; Neural networks ; Theoretical studies. Data and constants. Metering ; Thermography (temperature measurement)</subject><ispartof>International journal of heat and mass transfer, 1996, Vol.39 (11), p.2329-2332</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</citedby><cites>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0017-9310(95)00332-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3066535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jambunathan, K.</creatorcontrib><creatorcontrib>Hartle, S.L.</creatorcontrib><creatorcontrib>Ashforth-Frost, S.</creatorcontrib><creatorcontrib>Fontama, V.N.</creatorcontrib><title>Evaluating convective heat transfer coefficients using neural networks</title><title>International journal of heat and mass transfer</title><description>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Backpropagation</subject><subject>Boundary conditions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Image processing</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermography (temperature measurement)</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEMP4sdhdbL52M1FkNKqUPCi5xCzE41ud2uyW_Hfm7XFY0_DMM_7DjyEnFK4pkDlDQAtMsUoXCpxBcBYnsEeGdGyUFlOS7VPRv_IITmK8WNYgcsRmc_Wpu5N55u3iW2bNdrOr3HyjqabdME00WFIB3TOW49NFyd9HNgG-2DqNLrvNnzGY3LgTB3xZDvH5GU-e54-ZIun-8fp3SKzIi-6rLS8Kg3nheQVxQoQmQPlFFJnBVNGALMObSFVzgSnFpG_VhZy5pxTnHE2Jheb3lVov3qMnV76aLGuTYNtH3XBhSwBJEvk-U4ylzynOVUJ5BvQhjbGgE6vgl-a8KMp6EGvHmTpwZ1WQv_p1ZBiZ9t-E62pXXJlffzPMpBSMJGw2w2GycraY9Bx8Gix8iG51lXrd__5BcSsjpo</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Jambunathan, K.</creator><creator>Hartle, S.L.</creator><creator>Ashforth-Frost, S.</creator><creator>Fontama, V.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1996</creationdate><title>Evaluating convective heat transfer coefficients using neural networks</title><author>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Backpropagation</topic><topic>Boundary conditions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Image processing</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermography (temperature measurement)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jambunathan, K.</creatorcontrib><creatorcontrib>Hartle, S.L.</creatorcontrib><creatorcontrib>Ashforth-Frost, S.</creatorcontrib><creatorcontrib>Fontama, V.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jambunathan, K.</au><au>Hartle, S.L.</au><au>Ashforth-Frost, S.</au><au>Fontama, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating convective heat transfer coefficients using neural networks</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1996</date><risdate>1996</risdate><volume>39</volume><issue>11</issue><spage>2329</spage><epage>2332</epage><pages>2329-2332</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0017-9310(95)00332-0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 1996, Vol.39 (11), p.2329-2332
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_745680063
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Backpropagation
Boundary conditions
Energy
Energy. Thermal use of fuels
Errors
Exact sciences and technology
Heat conduction
Heat transfer
Image processing
Liquid crystals
Mathematical models
Neural networks
Theoretical studies. Data and constants. Metering
Thermography (temperature measurement)
title Evaluating convective heat transfer coefficients using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20convective%20heat%20transfer%20coefficients%20using%20neural%20networks&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Jambunathan,%20K.&rft.date=1996&rft.volume=39&rft.issue=11&rft.spage=2329&rft.epage=2332&rft.pages=2329-2332&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/0017-9310(95)00332-0&rft_dat=%3Cproquest_cross%3E745680063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26421219&rft_id=info:pmid/&rft_els_id=0017931095003320&rfr_iscdi=true