Evaluating convective heat transfer coefficients using neural networks
Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of exper...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 1996, Vol.39 (11), p.2329-2332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2332 |
---|---|
container_issue | 11 |
container_start_page | 2329 |
container_title | International journal of heat and mass transfer |
container_volume | 39 |
creator | Jambunathan, K. Hartle, S.L. Ashforth-Frost, S. Fontama, V.N. |
description | Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers. |
doi_str_mv | 10.1016/0017-9310(95)00332-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745680063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0017931095003320</els_id><sourcerecordid>745680063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEMP4sdhdbL52M1FkNKqUPCi5xCzE41ud2uyW_Hfm7XFY0_DMM_7DjyEnFK4pkDlDQAtMsUoXCpxBcBYnsEeGdGyUFlOS7VPRv_IITmK8WNYgcsRmc_Wpu5N55u3iW2bNdrOr3HyjqabdME00WFIB3TOW49NFyd9HNgG-2DqNLrvNnzGY3LgTB3xZDvH5GU-e54-ZIun-8fp3SKzIi-6rLS8Kg3nheQVxQoQmQPlFFJnBVNGALMObSFVzgSnFpG_VhZy5pxTnHE2Jheb3lVov3qMnV76aLGuTYNtH3XBhSwBJEvk-U4ylzynOVUJ5BvQhjbGgE6vgl-a8KMp6EGvHmTpwZ1WQv_p1ZBiZ9t-E62pXXJlffzPMpBSMJGw2w2GycraY9Bx8Gix8iG51lXrd__5BcSsjpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26421219</pqid></control><display><type>article</type><title>Evaluating convective heat transfer coefficients using neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</creator><creatorcontrib>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</creatorcontrib><description>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/0017-9310(95)00332-0</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Backpropagation ; Boundary conditions ; Energy ; Energy. Thermal use of fuels ; Errors ; Exact sciences and technology ; Heat conduction ; Heat transfer ; Image processing ; Liquid crystals ; Mathematical models ; Neural networks ; Theoretical studies. Data and constants. Metering ; Thermography (temperature measurement)</subject><ispartof>International journal of heat and mass transfer, 1996, Vol.39 (11), p.2329-2332</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</citedby><cites>FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0017-9310(95)00332-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3066535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jambunathan, K.</creatorcontrib><creatorcontrib>Hartle, S.L.</creatorcontrib><creatorcontrib>Ashforth-Frost, S.</creatorcontrib><creatorcontrib>Fontama, V.N.</creatorcontrib><title>Evaluating convective heat transfer coefficients using neural networks</title><title>International journal of heat and mass transfer</title><description>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Backpropagation</subject><subject>Boundary conditions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Image processing</subject><subject>Liquid crystals</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermography (temperature measurement)</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEMP4sdhdbL52M1FkNKqUPCi5xCzE41ud2uyW_Hfm7XFY0_DMM_7DjyEnFK4pkDlDQAtMsUoXCpxBcBYnsEeGdGyUFlOS7VPRv_IITmK8WNYgcsRmc_Wpu5N55u3iW2bNdrOr3HyjqabdME00WFIB3TOW49NFyd9HNgG-2DqNLrvNnzGY3LgTB3xZDvH5GU-e54-ZIun-8fp3SKzIi-6rLS8Kg3nheQVxQoQmQPlFFJnBVNGALMObSFVzgSnFpG_VhZy5pxTnHE2Jheb3lVov3qMnV76aLGuTYNtH3XBhSwBJEvk-U4ylzynOVUJ5BvQhjbGgE6vgl-a8KMp6EGvHmTpwZ1WQv_p1ZBiZ9t-E62pXXJlffzPMpBSMJGw2w2GycraY9Bx8Gix8iG51lXrd__5BcSsjpo</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Jambunathan, K.</creator><creator>Hartle, S.L.</creator><creator>Ashforth-Frost, S.</creator><creator>Fontama, V.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1996</creationdate><title>Evaluating convective heat transfer coefficients using neural networks</title><author>Jambunathan, K. ; Hartle, S.L. ; Ashforth-Frost, S. ; Fontama, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-8c4d8a44764d1ed0ee3f09f9e1fc539a503cfec76923541cee4bdc023fff94343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Backpropagation</topic><topic>Boundary conditions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Image processing</topic><topic>Liquid crystals</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermography (temperature measurement)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jambunathan, K.</creatorcontrib><creatorcontrib>Hartle, S.L.</creatorcontrib><creatorcontrib>Ashforth-Frost, S.</creatorcontrib><creatorcontrib>Fontama, V.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jambunathan, K.</au><au>Hartle, S.L.</au><au>Ashforth-Frost, S.</au><au>Fontama, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating convective heat transfer coefficients using neural networks</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1996</date><risdate>1996</risdate><volume>39</volume><issue>11</issue><spage>2329</spage><epage>2332</epage><pages>2329-2332</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Liquid crystal thermography combined with transient conduction analysis is often used to deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation algorithm have been successfully applied to predict heat transfer coefficients from a given set of experimentally obtained conditions. Performance characteristics studied on numerous network configurations relevant to this application indicate that a 3-6-3-1 arrangement yields the least errors with convergence improving directly with both the global learning rates and those of individual layers.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0017-9310(95)00332-0</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 1996, Vol.39 (11), p.2329-2332 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_745680063 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Backpropagation Boundary conditions Energy Energy. Thermal use of fuels Errors Exact sciences and technology Heat conduction Heat transfer Image processing Liquid crystals Mathematical models Neural networks Theoretical studies. Data and constants. Metering Thermography (temperature measurement) |
title | Evaluating convective heat transfer coefficients using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20convective%20heat%20transfer%20coefficients%20using%20neural%20networks&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Jambunathan,%20K.&rft.date=1996&rft.volume=39&rft.issue=11&rft.spage=2329&rft.epage=2332&rft.pages=2329-2332&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/0017-9310(95)00332-0&rft_dat=%3Cproquest_cross%3E745680063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26421219&rft_id=info:pmid/&rft_els_id=0017931095003320&rfr_iscdi=true |