Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling
A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annul...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1994-02, Vol.77 (2), p.467-480 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 2 |
container_start_page | 467 |
container_title | Journal of the American Ceramic Society |
container_volume | 77 |
creator | Filipuzzi, Ludovic Naslain, Roger |
description | A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior. |
doi_str_mv | 10.1111/j.1151-2916.1994.tb07016.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745678450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745678450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</originalsourceid><addsrcrecordid>eNqVkVFP2zAQx60JpBW272BN03ghrR3HdswLQhl0pRQe2NRHy3HOm0ualDho7bfHUSse0eYHn-7ud_-T7o_QF0rGNL7JKgZOk1RRMaZKZeO-JJLEZPsBjSg_tI7QiBCSJjJPyUd0EsIqplTl2Qg9Pmx9ZXrfNngB9o9pfFgHbJoKz30DvbcBtw7T78mjLybFJP64aNebNvge8ML00HlThws8m53jRVtB7Zvfn9Cxi0X4fIin6NfN9c_iR3L3MJ0VV3eJzbiSCUjHmeApqRQRqZFUQukUc6xUogQwylZZDsQYKqxxlFdUWUWdKEVppeLATtHZXnfTtc8vEHq99sFCXZsG2pegZcaFzDNOIvntXTKVjFCWpv8EEsUH8GIP2q4NoQOnN51fm26nKdGDNXqlB2v0cH89WKMP1uhtHP562GKCNbXrTGN9eFNgKhMizyN2ucf--hp2_7FA314V15mQUSHZK_jQw_ZNwXRPOnYl18v7qV7Oi-Vc3DO9ZK_21bCT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27300952</pqid></control><display><type>article</type><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Filipuzzi, Ludovic ; Naslain, Roger</creator><creatorcontrib>Filipuzzi, Ludovic ; Naslain, Roger</creatorcontrib><description>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1994.tb07016.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Carbon ; Ceramic fibers ; Ceramic industries ; Chemical industry and chemicals ; Diffusion in solids ; Exact sciences and technology ; Mass transfer ; Mathematical models ; Oxidation ; Oxygen ; Phase interfaces ; Porous materials ; Reaction kinetics ; Silicon carbide ; Structural ceramics ; Technical ceramics ; Thermal effects</subject><ispartof>Journal of the American Ceramic Society, 1994-02, Vol.77 (2), p.467-480</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</citedby><cites>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1994.tb07016.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1994.tb07016.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3946688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipuzzi, Ludovic</creatorcontrib><creatorcontrib>Naslain, Roger</creatorcontrib><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><title>Journal of the American Ceramic Society</title><description>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Carbon</subject><subject>Ceramic fibers</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Phase interfaces</subject><subject>Porous materials</subject><subject>Reaction kinetics</subject><subject>Silicon carbide</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><subject>Thermal effects</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkVFP2zAQx60JpBW272BN03ghrR3HdswLQhl0pRQe2NRHy3HOm0ualDho7bfHUSse0eYHn-7ud_-T7o_QF0rGNL7JKgZOk1RRMaZKZeO-JJLEZPsBjSg_tI7QiBCSJjJPyUd0EsIqplTl2Qg9Pmx9ZXrfNngB9o9pfFgHbJoKz30DvbcBtw7T78mjLybFJP64aNebNvge8ML00HlThws8m53jRVtB7Zvfn9Cxi0X4fIin6NfN9c_iR3L3MJ0VV3eJzbiSCUjHmeApqRQRqZFUQukUc6xUogQwylZZDsQYKqxxlFdUWUWdKEVppeLATtHZXnfTtc8vEHq99sFCXZsG2pegZcaFzDNOIvntXTKVjFCWpv8EEsUH8GIP2q4NoQOnN51fm26nKdGDNXqlB2v0cH89WKMP1uhtHP562GKCNbXrTGN9eFNgKhMizyN2ucf--hp2_7FA314V15mQUSHZK_jQw_ZNwXRPOnYl18v7qV7Oi-Vc3DO9ZK_21bCT</recordid><startdate>199402</startdate><enddate>199402</enddate><creator>Filipuzzi, Ludovic</creator><creator>Naslain, Roger</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>7TC</scope></search><sort><creationdate>199402</creationdate><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><author>Filipuzzi, Ludovic ; Naslain, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Carbon</topic><topic>Ceramic fibers</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Phase interfaces</topic><topic>Porous materials</topic><topic>Reaction kinetics</topic><topic>Silicon carbide</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipuzzi, Ludovic</creatorcontrib><creatorcontrib>Naslain, Roger</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipuzzi, Ludovic</au><au>Naslain, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1994-02</date><risdate>1994</risdate><volume>77</volume><issue>2</issue><spage>467</spage><epage>480</epage><pages>467-480</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1994.tb07016.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1994-02, Vol.77 (2), p.467-480 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_745678450 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Building materials. Ceramics. Glasses Carbon Ceramic fibers Ceramic industries Chemical industry and chemicals Diffusion in solids Exact sciences and technology Mass transfer Mathematical models Oxidation Oxygen Phase interfaces Porous materials Reaction kinetics Silicon carbide Structural ceramics Technical ceramics Thermal effects |
title | Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20Mechanisms%20and%20Kinetics%20of%201D-SiC/C/SiC%20Composite%20Materials:%20II,%20Modeling&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Filipuzzi,%20Ludovic&rft.date=1994-02&rft.volume=77&rft.issue=2&rft.spage=467&rft.epage=480&rft.pages=467-480&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1994.tb07016.x&rft_dat=%3Cproquest_cross%3E745678450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27300952&rft_id=info:pmid/&rfr_iscdi=true |