Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling

A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1994-02, Vol.77 (2), p.467-480
Hauptverfasser: Filipuzzi, Ludovic, Naslain, Roger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 467
container_title Journal of the American Ceramic Society
container_volume 77
creator Filipuzzi, Ludovic
Naslain, Roger
description A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 < PO2 < 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.
doi_str_mv 10.1111/j.1151-2916.1994.tb07016.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745678450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745678450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</originalsourceid><addsrcrecordid>eNqVkVFP2zAQx60JpBW272BN03ghrR3HdswLQhl0pRQe2NRHy3HOm0ualDho7bfHUSse0eYHn-7ud_-T7o_QF0rGNL7JKgZOk1RRMaZKZeO-JJLEZPsBjSg_tI7QiBCSJjJPyUd0EsIqplTl2Qg9Pmx9ZXrfNngB9o9pfFgHbJoKz30DvbcBtw7T78mjLybFJP64aNebNvge8ML00HlThws8m53jRVtB7Zvfn9Cxi0X4fIin6NfN9c_iR3L3MJ0VV3eJzbiSCUjHmeApqRQRqZFUQukUc6xUogQwylZZDsQYKqxxlFdUWUWdKEVppeLATtHZXnfTtc8vEHq99sFCXZsG2pegZcaFzDNOIvntXTKVjFCWpv8EEsUH8GIP2q4NoQOnN51fm26nKdGDNXqlB2v0cH89WKMP1uhtHP562GKCNbXrTGN9eFNgKhMizyN2ucf--hp2_7FA314V15mQUSHZK_jQw_ZNwXRPOnYl18v7qV7Oi-Vc3DO9ZK_21bCT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27300952</pqid></control><display><type>article</type><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Filipuzzi, Ludovic ; Naslain, Roger</creator><creatorcontrib>Filipuzzi, Ludovic ; Naslain, Roger</creatorcontrib><description>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 &lt; PO2 &lt; 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1994.tb07016.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Carbon ; Ceramic fibers ; Ceramic industries ; Chemical industry and chemicals ; Diffusion in solids ; Exact sciences and technology ; Mass transfer ; Mathematical models ; Oxidation ; Oxygen ; Phase interfaces ; Porous materials ; Reaction kinetics ; Silicon carbide ; Structural ceramics ; Technical ceramics ; Thermal effects</subject><ispartof>Journal of the American Ceramic Society, 1994-02, Vol.77 (2), p.467-480</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</citedby><cites>FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1994.tb07016.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1994.tb07016.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3946688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipuzzi, Ludovic</creatorcontrib><creatorcontrib>Naslain, Roger</creatorcontrib><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><title>Journal of the American Ceramic Society</title><description>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 &lt; PO2 &lt; 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Carbon</subject><subject>Ceramic fibers</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Phase interfaces</subject><subject>Porous materials</subject><subject>Reaction kinetics</subject><subject>Silicon carbide</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><subject>Thermal effects</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkVFP2zAQx60JpBW272BN03ghrR3HdswLQhl0pRQe2NRHy3HOm0ualDho7bfHUSse0eYHn-7ud_-T7o_QF0rGNL7JKgZOk1RRMaZKZeO-JJLEZPsBjSg_tI7QiBCSJjJPyUd0EsIqplTl2Qg9Pmx9ZXrfNngB9o9pfFgHbJoKz30DvbcBtw7T78mjLybFJP64aNebNvge8ML00HlThws8m53jRVtB7Zvfn9Cxi0X4fIin6NfN9c_iR3L3MJ0VV3eJzbiSCUjHmeApqRQRqZFUQukUc6xUogQwylZZDsQYKqxxlFdUWUWdKEVppeLATtHZXnfTtc8vEHq99sFCXZsG2pegZcaFzDNOIvntXTKVjFCWpv8EEsUH8GIP2q4NoQOnN51fm26nKdGDNXqlB2v0cH89WKMP1uhtHP562GKCNbXrTGN9eFNgKhMizyN2ucf--hp2_7FA314V15mQUSHZK_jQw_ZNwXRPOnYl18v7qV7Oi-Vc3DO9ZK_21bCT</recordid><startdate>199402</startdate><enddate>199402</enddate><creator>Filipuzzi, Ludovic</creator><creator>Naslain, Roger</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>7TC</scope></search><sort><creationdate>199402</creationdate><title>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</title><author>Filipuzzi, Ludovic ; Naslain, Roger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4597-e7f536520d9062a717ebf93f3b96beea9cd48e0aa16caf15d19c91f6b6bc795e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Carbon</topic><topic>Ceramic fibers</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Phase interfaces</topic><topic>Porous materials</topic><topic>Reaction kinetics</topic><topic>Silicon carbide</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipuzzi, Ludovic</creatorcontrib><creatorcontrib>Naslain, Roger</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipuzzi, Ludovic</au><au>Naslain, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1994-02</date><risdate>1994</risdate><volume>77</volume><issue>2</issue><spage>467</spage><epage>480</epage><pages>467-480</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>A model, based on a simple axisymmettical fiber/interphase/ matrix assembly, is derived to depict the oxidation behavior of ID‐SiC/C/SiC composites within the temperature range 900–1300°C and for 10 &lt; PO2 &lt; 100 kPa. It takes into account (i) the changes versus time of the geometry of the annular pore resulting from the consumption by oxidation of the carbon interphase, (ii) the may transfers by diffusion along the pore of the reactant and products, and (iii) the chemical reactions with oxygen of both the pore walls (yielding silica) and the pore bottom (consisting of carbon). The model gives the gaseous species concentration and silica thickness profiles along the pore, the length of carbon consumed by oxidation, and the relative weight change. The model depicts in a satisfactory manner the features of the TGA curves recorded on actual composites and it is in excellent agreement with the measurements of the carbon interphase lengths consumed by oxidation. It shows that the oxidation resistance of ID‐SiC/C/SiC composites is better at high temperatures (T 1100°C) and for thin carbon interphases (e 0.1 μm). Under such conditions, the materials exhibit a self‐healing behavior.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1994.tb07016.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1994-02, Vol.77 (2), p.467-480
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_745678450
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Building materials. Ceramics. Glasses
Carbon
Ceramic fibers
Ceramic industries
Chemical industry and chemicals
Diffusion in solids
Exact sciences and technology
Mass transfer
Mathematical models
Oxidation
Oxygen
Phase interfaces
Porous materials
Reaction kinetics
Silicon carbide
Structural ceramics
Technical ceramics
Thermal effects
title Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20Mechanisms%20and%20Kinetics%20of%201D-SiC/C/SiC%20Composite%20Materials:%20II,%20Modeling&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Filipuzzi,%20Ludovic&rft.date=1994-02&rft.volume=77&rft.issue=2&rft.spage=467&rft.epage=480&rft.pages=467-480&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1994.tb07016.x&rft_dat=%3Cproquest_cross%3E745678450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27300952&rft_id=info:pmid/&rfr_iscdi=true