Simulation of solar air heating at constant temperature

Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar Energy 1995, Vol.54 (2), p.75-83
Hauptverfasser: Abbud, I.A., Löf, G.O.G., Hittle, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 2
container_start_page 75
container_title Solar Energy
container_volume 54
creator Abbud, I.A.
Löf, G.O.G.
Hittle, D.C.
description Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m 2 through a 50 m 2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.
doi_str_mv 10.1016/0038-092X(94)00101-I
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_745678385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X9400101I</els_id><sourcerecordid>4514733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOI7-Aw-tiB-H1lTn-7Igy64OLHhQwVtIZ6rdLD3JmKQF_71pZ9mDhz0VFE-9Ve9bhDwH-h4oyA-UMt1TM_x4a_g7Sluv3z0gG-AKehiEekg2d8hj8qSUmwYp0GpD1NdwWGZXQ4pdmrqSZpc7F3J3ja0Zf3audj7FUl2sXcXDEbOrS8an5NHk5oLPbuuWfL-8-Hb-ub_68ml3_vGq99xA7Qe915KbUShAmMZxNIbxttzTQYOcRqbNJJRkOGqkYnLaiT0XwKnmTKPSbEtenHRTqcEWHyr663ZQRF_tAEZK0Zg3J-aY068FS7WHUDzOs4uYlmIVF7JJ6ZV8fS85CGO4bFltycv_wJu05Nic2oGBEhTY0CB-gnxOpWSc7DGHg8t_LFC7Psauqds1dWu4_fcYu2tjr261XfFunrKLPpS7WcYBJOMNOzth2OL9HTCv7jF63Ie8mt-ncP-ev5LDnpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231750132</pqid></control><display><type>article</type><title>Simulation of solar air heating at constant temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</creator><creatorcontrib>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</creatorcontrib><description>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m 2 through a 50 m 2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(94)00101-I</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Applied sciences ; Computer simulation ; Control equipment ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Fans ; Heat storage ; Heating ; Hot air heating ; Natural energy ; RESIDENTIAL BUILDINGS ; SIMULATION ; SOLAR AIR HEATERS ; SOLAR COLLECTORS ; SOLAR ENERGY ; SOLAR SPACE HEATING ; Solar thermal conversion ; Space heating ; Storage (materials) ; Temperature ; TEMPERATURE CONTROL</subject><ispartof>Solar Energy, 1995, Vol.54 (2), p.75-83</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</citedby><cites>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0038092X9400101I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3411634$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/219665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbud, I.A.</creatorcontrib><creatorcontrib>Löf, G.O.G.</creatorcontrib><creatorcontrib>Hittle, D.C.</creatorcontrib><title>Simulation of solar air heating at constant temperature</title><title>Solar Energy</title><description>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m 2 through a 50 m 2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</description><subject>Aerodynamics</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Fans</subject><subject>Heat storage</subject><subject>Heating</subject><subject>Hot air heating</subject><subject>Natural energy</subject><subject>RESIDENTIAL BUILDINGS</subject><subject>SIMULATION</subject><subject>SOLAR AIR HEATERS</subject><subject>SOLAR COLLECTORS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR SPACE HEATING</subject><subject>Solar thermal conversion</subject><subject>Space heating</subject><subject>Storage (materials)</subject><subject>Temperature</subject><subject>TEMPERATURE CONTROL</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOI7-Aw-tiB-H1lTn-7Igy64OLHhQwVtIZ6rdLD3JmKQF_71pZ9mDhz0VFE-9Ve9bhDwH-h4oyA-UMt1TM_x4a_g7Sluv3z0gG-AKehiEekg2d8hj8qSUmwYp0GpD1NdwWGZXQ4pdmrqSZpc7F3J3ja0Zf3audj7FUl2sXcXDEbOrS8an5NHk5oLPbuuWfL-8-Hb-ub_68ml3_vGq99xA7Qe915KbUShAmMZxNIbxttzTQYOcRqbNJJRkOGqkYnLaiT0XwKnmTKPSbEtenHRTqcEWHyr663ZQRF_tAEZK0Zg3J-aY068FS7WHUDzOs4uYlmIVF7JJ6ZV8fS85CGO4bFltycv_wJu05Nic2oGBEhTY0CB-gnxOpWSc7DGHg8t_LFC7Psauqds1dWu4_fcYu2tjr261XfFunrKLPpS7WcYBJOMNOzth2OL9HTCv7jF63Ie8mt-ncP-ev5LDnpg</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Abbud, I.A.</creator><creator>Löf, G.O.G.</creator><creator>Hittle, D.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope><scope>OTOTI</scope></search><sort><creationdate>1995</creationdate><title>Simulation of solar air heating at constant temperature</title><author>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Aerodynamics</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Fans</topic><topic>Heat storage</topic><topic>Heating</topic><topic>Hot air heating</topic><topic>Natural energy</topic><topic>RESIDENTIAL BUILDINGS</topic><topic>SIMULATION</topic><topic>SOLAR AIR HEATERS</topic><topic>SOLAR COLLECTORS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR SPACE HEATING</topic><topic>Solar thermal conversion</topic><topic>Space heating</topic><topic>Storage (materials)</topic><topic>Temperature</topic><topic>TEMPERATURE CONTROL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbud, I.A.</creatorcontrib><creatorcontrib>Löf, G.O.G.</creatorcontrib><creatorcontrib>Hittle, D.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbud, I.A.</au><au>Löf, G.O.G.</au><au>Hittle, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of solar air heating at constant temperature</atitle><jtitle>Solar Energy</jtitle><date>1995</date><risdate>1995</risdate><volume>54</volume><issue>2</issue><spage>75</spage><epage>83</epage><pages>75-83</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m 2 through a 50 m 2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(94)00101-I</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar Energy, 1995, Vol.54 (2), p.75-83
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_miscellaneous_745678385
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Applied sciences
Computer simulation
Control equipment
Energy
Equipments, installations and applications
Exact sciences and technology
Fans
Heat storage
Heating
Hot air heating
Natural energy
RESIDENTIAL BUILDINGS
SIMULATION
SOLAR AIR HEATERS
SOLAR COLLECTORS
SOLAR ENERGY
SOLAR SPACE HEATING
Solar thermal conversion
Space heating
Storage (materials)
Temperature
TEMPERATURE CONTROL
title Simulation of solar air heating at constant temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20solar%20air%20heating%20at%20constant%20temperature&rft.jtitle=Solar%20Energy&rft.au=Abbud,%20I.A.&rft.date=1995&rft.volume=54&rft.issue=2&rft.spage=75&rft.epage=83&rft.pages=75-83&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(94)00101-I&rft_dat=%3Cproquest_osti_%3E4514733%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231750132&rft_id=info:pmid/&rft_els_id=0038092X9400101I&rfr_iscdi=true