Simulation of solar air heating at constant temperature
Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, us...
Gespeichert in:
Veröffentlicht in: | Solar Energy 1995, Vol.54 (2), p.75-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 2 |
container_start_page | 75 |
container_title | Solar Energy |
container_volume | 54 |
creator | Abbud, I.A. Löf, G.O.G. Hittle, D.C. |
description | Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m
2 through a 50 m
2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level. |
doi_str_mv | 10.1016/0038-092X(94)00101-I |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_745678385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0038092X9400101I</els_id><sourcerecordid>4514733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOI7-Aw-tiB-H1lTn-7Igy64OLHhQwVtIZ6rdLD3JmKQF_71pZ9mDhz0VFE-9Ve9bhDwH-h4oyA-UMt1TM_x4a_g7Sluv3z0gG-AKehiEekg2d8hj8qSUmwYp0GpD1NdwWGZXQ4pdmrqSZpc7F3J3ja0Zf3audj7FUl2sXcXDEbOrS8an5NHk5oLPbuuWfL-8-Hb-ub_68ml3_vGq99xA7Qe915KbUShAmMZxNIbxttzTQYOcRqbNJJRkOGqkYnLaiT0XwKnmTKPSbEtenHRTqcEWHyr663ZQRF_tAEZK0Zg3J-aY068FS7WHUDzOs4uYlmIVF7JJ6ZV8fS85CGO4bFltycv_wJu05Nic2oGBEhTY0CB-gnxOpWSc7DGHg8t_LFC7Psauqds1dWu4_fcYu2tjr261XfFunrKLPpS7WcYBJOMNOzth2OL9HTCv7jF63Ie8mt-ncP-ev5LDnpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231750132</pqid></control><display><type>article</type><title>Simulation of solar air heating at constant temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</creator><creatorcontrib>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</creatorcontrib><description>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m
2 through a 50 m
2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/0038-092X(94)00101-I</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Applied sciences ; Computer simulation ; Control equipment ; Energy ; Equipments, installations and applications ; Exact sciences and technology ; Fans ; Heat storage ; Heating ; Hot air heating ; Natural energy ; RESIDENTIAL BUILDINGS ; SIMULATION ; SOLAR AIR HEATERS ; SOLAR COLLECTORS ; SOLAR ENERGY ; SOLAR SPACE HEATING ; Solar thermal conversion ; Space heating ; Storage (materials) ; Temperature ; TEMPERATURE CONTROL</subject><ispartof>Solar Energy, 1995, Vol.54 (2), p.75-83</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</citedby><cites>FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0038092X9400101I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3411634$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/219665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbud, I.A.</creatorcontrib><creatorcontrib>Löf, G.O.G.</creatorcontrib><creatorcontrib>Hittle, D.C.</creatorcontrib><title>Simulation of solar air heating at constant temperature</title><title>Solar Energy</title><description>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m
2 through a 50 m
2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</description><subject>Aerodynamics</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Energy</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Fans</subject><subject>Heat storage</subject><subject>Heating</subject><subject>Hot air heating</subject><subject>Natural energy</subject><subject>RESIDENTIAL BUILDINGS</subject><subject>SIMULATION</subject><subject>SOLAR AIR HEATERS</subject><subject>SOLAR COLLECTORS</subject><subject>SOLAR ENERGY</subject><subject>SOLAR SPACE HEATING</subject><subject>Solar thermal conversion</subject><subject>Space heating</subject><subject>Storage (materials)</subject><subject>Temperature</subject><subject>TEMPERATURE CONTROL</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOI7-Aw-tiB-H1lTn-7Igy64OLHhQwVtIZ6rdLD3JmKQF_71pZ9mDhz0VFE-9Ve9bhDwH-h4oyA-UMt1TM_x4a_g7Sluv3z0gG-AKehiEekg2d8hj8qSUmwYp0GpD1NdwWGZXQ4pdmrqSZpc7F3J3ja0Zf3audj7FUl2sXcXDEbOrS8an5NHk5oLPbuuWfL-8-Hb-ub_68ml3_vGq99xA7Qe915KbUShAmMZxNIbxttzTQYOcRqbNJJRkOGqkYnLaiT0XwKnmTKPSbEtenHRTqcEWHyr663ZQRF_tAEZK0Zg3J-aY068FS7WHUDzOs4uYlmIVF7JJ6ZV8fS85CGO4bFltycv_wJu05Nic2oGBEhTY0CB-gnxOpWSc7DGHg8t_LFC7Psauqds1dWu4_fcYu2tjr261XfFunrKLPpS7WcYBJOMNOzth2OL9HTCv7jF63Ie8mt-ncP-ev5LDnpg</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Abbud, I.A.</creator><creator>Löf, G.O.G.</creator><creator>Hittle, D.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope><scope>OTOTI</scope></search><sort><creationdate>1995</creationdate><title>Simulation of solar air heating at constant temperature</title><author>Abbud, I.A. ; Löf, G.O.G. ; Hittle, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-28d8649b571e1fbbb9934001c02816fb389f5763eb8e05fa8a5d451408438e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Aerodynamics</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Energy</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Fans</topic><topic>Heat storage</topic><topic>Heating</topic><topic>Hot air heating</topic><topic>Natural energy</topic><topic>RESIDENTIAL BUILDINGS</topic><topic>SIMULATION</topic><topic>SOLAR AIR HEATERS</topic><topic>SOLAR COLLECTORS</topic><topic>SOLAR ENERGY</topic><topic>SOLAR SPACE HEATING</topic><topic>Solar thermal conversion</topic><topic>Space heating</topic><topic>Storage (materials)</topic><topic>Temperature</topic><topic>TEMPERATURE CONTROL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbud, I.A.</creatorcontrib><creatorcontrib>Löf, G.O.G.</creatorcontrib><creatorcontrib>Hittle, D.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbud, I.A.</au><au>Löf, G.O.G.</au><au>Hittle, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of solar air heating at constant temperature</atitle><jtitle>Solar Energy</jtitle><date>1995</date><risdate>1995</risdate><volume>54</volume><issue>2</issue><spage>75</spage><epage>83</epage><pages>75-83</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>Solar space heating with warm air in typical air collectors and rock bed storage systems involves constant air flow rates and varying the temperature of supply to rooms and to storage. This practice results in undesirable fluctuations in comfort levels in the living space, excessive storage size, useful but inaccessible heat in storage, and unnecessarily high energy consumption for air circulation and auxiliary heat. These drawbacks can be avoided by use of a practical controller and variable speed fan to provide heated air from the collector at constant temperature and a continually varying flow rate. Collector manufacturer's data, confirmed by seasonal tests on a solar air heating system in Solar House II at Colorado State University, have been used in simulations at constant hot air supply temperatures of 40°, 50°, and 60°C, and at one typical constant flow rate of 49 kg/h per m
2 through a 50 m
2 collector and rock bed storage unit, providing approximately half the seasonal heating requirements of a residential building. Auxiliary heat requirements and fan power use in the 40°C and 50°C constant temperature operations were significantly reduced from the levels prevailing under constant flow conditions. Collection efficiency and solar heat supply at constant flow were slightly higher than values at the 60°C constant temperature level.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0038-092X(94)00101-I</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar Energy, 1995, Vol.54 (2), p.75-83 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_745678385 |
source | Elsevier ScienceDirect Journals |
subjects | Aerodynamics Applied sciences Computer simulation Control equipment Energy Equipments, installations and applications Exact sciences and technology Fans Heat storage Heating Hot air heating Natural energy RESIDENTIAL BUILDINGS SIMULATION SOLAR AIR HEATERS SOLAR COLLECTORS SOLAR ENERGY SOLAR SPACE HEATING Solar thermal conversion Space heating Storage (materials) Temperature TEMPERATURE CONTROL |
title | Simulation of solar air heating at constant temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20solar%20air%20heating%20at%20constant%20temperature&rft.jtitle=Solar%20Energy&rft.au=Abbud,%20I.A.&rft.date=1995&rft.volume=54&rft.issue=2&rft.spage=75&rft.epage=83&rft.pages=75-83&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/0038-092X(94)00101-I&rft_dat=%3Cproquest_osti_%3E4514733%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231750132&rft_id=info:pmid/&rft_els_id=0038092X9400101I&rfr_iscdi=true |