Gravimetric biosensors based on acoustic waves in thin polymer films

Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of abo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 1993, Vol.8 (9), p.401-407
Hauptverfasser: Walton, P.W., O'Flaherty, M.R., Butler, M.E., Compton, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 9
container_start_page 401
container_title Biosensors & bioelectronics
container_volume 8
creator Walton, P.W.
O'Flaherty, M.R.
Butler, M.E.
Compton, P.
description Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.
doi_str_mv 10.1016/0956-5663(93)80024-J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745652987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>095656639380024J</els_id><sourcerecordid>745652987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</originalsourceid><addsrcrecordid>eNp9kEtPGzEQgK2qSKSBf8BhD1VbDlvGz_VeKqFAaSMkLnC2bO-s6mofqWeTin_PhkQcucwc5pvXx9gFh-8cuLmCWptSGyO_1fLSAghVrj-wBbeVLJWQ-iNbvCGn7BPRXwCoeA0LdnOX_S71OOUUi5BGwoHGTEXwhE0xDoWP45amufjf75CKNBTTnzlsxu65x1y0qevpjJ20viM8P-Yle_p5-7j6Vd4_3P1eXd-XUUkxlbVQ0YSoANsWgvdWacWxCtZ6GaTXQgPwEKwCMI1HbFXTgDAqBKm5sFIu2dfD3E0e_22RJtcnith1fsD5SlcpbbSo57eX7Mu7JDeVrSowM6gOYMwjUcbWbXLqfX52HNxertubc3tzrpbuVa5bz22fj_M9Rd-12Q8x0VuvrLUQ2s7YjwOGs5VdwuwoJhwiNiljnFwzpvf3vACIkY1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16787706</pqid></control><display><type>article</type><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><source>Access via ScienceDirect (Elsevier)</source><creator>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</creator><creatorcontrib>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</creatorcontrib><description>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/0956-5663(93)80024-J</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>acoustic wave sensors ; Biological and medical sciences ; Biosensors ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; immunosensors ; Methods. Procedures. Technologies ; piezoelectric biosensors ; Various methods and equipments</subject><ispartof>Biosensors &amp; bioelectronics, 1993, Vol.8 (9), p.401-407</ispartof><rights>1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</citedby><cites>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0956-5663(93)80024-J$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3952258$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, P.W.</creatorcontrib><creatorcontrib>O'Flaherty, M.R.</creatorcontrib><creatorcontrib>Butler, M.E.</creatorcontrib><creatorcontrib>Compton, P.</creatorcontrib><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><title>Biosensors &amp; bioelectronics</title><description>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</description><subject>acoustic wave sensors</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>immunosensors</subject><subject>Methods. Procedures. Technologies</subject><subject>piezoelectric biosensors</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPGzEQgK2qSKSBf8BhD1VbDlvGz_VeKqFAaSMkLnC2bO-s6mofqWeTin_PhkQcucwc5pvXx9gFh-8cuLmCWptSGyO_1fLSAghVrj-wBbeVLJWQ-iNbvCGn7BPRXwCoeA0LdnOX_S71OOUUi5BGwoHGTEXwhE0xDoWP45amufjf75CKNBTTnzlsxu65x1y0qevpjJ20viM8P-Yle_p5-7j6Vd4_3P1eXd-XUUkxlbVQ0YSoANsWgvdWacWxCtZ6GaTXQgPwEKwCMI1HbFXTgDAqBKm5sFIu2dfD3E0e_22RJtcnith1fsD5SlcpbbSo57eX7Mu7JDeVrSowM6gOYMwjUcbWbXLqfX52HNxertubc3tzrpbuVa5bz22fj_M9Rd-12Q8x0VuvrLUQ2s7YjwOGs5VdwuwoJhwiNiljnFwzpvf3vACIkY1g</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Walton, P.W.</creator><creator>O'Flaherty, M.R.</creator><creator>Butler, M.E.</creator><creator>Compton, P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>1993</creationdate><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><author>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>acoustic wave sensors</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>immunosensors</topic><topic>Methods. Procedures. Technologies</topic><topic>piezoelectric biosensors</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, P.W.</creatorcontrib><creatorcontrib>O'Flaherty, M.R.</creatorcontrib><creatorcontrib>Butler, M.E.</creatorcontrib><creatorcontrib>Compton, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, P.W.</au><au>O'Flaherty, M.R.</au><au>Butler, M.E.</au><au>Compton, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravimetric biosensors based on acoustic waves in thin polymer films</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><date>1993</date><risdate>1993</risdate><volume>8</volume><issue>9</issue><spage>401</spage><epage>407</epage><pages>401-407</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/0956-5663(93)80024-J</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 1993, Vol.8 (9), p.401-407
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_745652987
source Access via ScienceDirect (Elsevier)
subjects acoustic wave sensors
Biological and medical sciences
Biosensors
Biotechnology
Fundamental and applied biological sciences. Psychology
immunosensors
Methods. Procedures. Technologies
piezoelectric biosensors
Various methods and equipments
title Gravimetric biosensors based on acoustic waves in thin polymer films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravimetric%20biosensors%20based%20on%20acoustic%20waves%20in%20thin%20polymer%20films&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Walton,%20P.W.&rft.date=1993&rft.volume=8&rft.issue=9&rft.spage=401&rft.epage=407&rft.pages=401-407&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/0956-5663(93)80024-J&rft_dat=%3Cproquest_cross%3E745652987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16787706&rft_id=info:pmid/&rft_els_id=095656639380024J&rfr_iscdi=true