Gravimetric biosensors based on acoustic waves in thin polymer films
Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of abo...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 1993, Vol.8 (9), p.401-407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 9 |
container_start_page | 401 |
container_title | Biosensors & bioelectronics |
container_volume | 8 |
creator | Walton, P.W. O'Flaherty, M.R. Butler, M.E. Compton, P. |
description | Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible. |
doi_str_mv | 10.1016/0956-5663(93)80024-J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745652987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>095656639380024J</els_id><sourcerecordid>745652987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</originalsourceid><addsrcrecordid>eNp9kEtPGzEQgK2qSKSBf8BhD1VbDlvGz_VeKqFAaSMkLnC2bO-s6mofqWeTin_PhkQcucwc5pvXx9gFh-8cuLmCWptSGyO_1fLSAghVrj-wBbeVLJWQ-iNbvCGn7BPRXwCoeA0LdnOX_S71OOUUi5BGwoHGTEXwhE0xDoWP45amufjf75CKNBTTnzlsxu65x1y0qevpjJ20viM8P-Yle_p5-7j6Vd4_3P1eXd-XUUkxlbVQ0YSoANsWgvdWacWxCtZ6GaTXQgPwEKwCMI1HbFXTgDAqBKm5sFIu2dfD3E0e_22RJtcnith1fsD5SlcpbbSo57eX7Mu7JDeVrSowM6gOYMwjUcbWbXLqfX52HNxertubc3tzrpbuVa5bz22fj_M9Rd-12Q8x0VuvrLUQ2s7YjwOGs5VdwuwoJhwiNiljnFwzpvf3vACIkY1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16787706</pqid></control><display><type>article</type><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><source>Access via ScienceDirect (Elsevier)</source><creator>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</creator><creatorcontrib>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</creatorcontrib><description>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/0956-5663(93)80024-J</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>acoustic wave sensors ; Biological and medical sciences ; Biosensors ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; immunosensors ; Methods. Procedures. Technologies ; piezoelectric biosensors ; Various methods and equipments</subject><ispartof>Biosensors & bioelectronics, 1993, Vol.8 (9), p.401-407</ispartof><rights>1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</citedby><cites>FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0956-5663(93)80024-J$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3952258$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, P.W.</creatorcontrib><creatorcontrib>O'Flaherty, M.R.</creatorcontrib><creatorcontrib>Butler, M.E.</creatorcontrib><creatorcontrib>Compton, P.</creatorcontrib><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><title>Biosensors & bioelectronics</title><description>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</description><subject>acoustic wave sensors</subject><subject>Biological and medical sciences</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>immunosensors</subject><subject>Methods. Procedures. Technologies</subject><subject>piezoelectric biosensors</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPGzEQgK2qSKSBf8BhD1VbDlvGz_VeKqFAaSMkLnC2bO-s6mofqWeTin_PhkQcucwc5pvXx9gFh-8cuLmCWptSGyO_1fLSAghVrj-wBbeVLJWQ-iNbvCGn7BPRXwCoeA0LdnOX_S71OOUUi5BGwoHGTEXwhE0xDoWP45amufjf75CKNBTTnzlsxu65x1y0qevpjJ20viM8P-Yle_p5-7j6Vd4_3P1eXd-XUUkxlbVQ0YSoANsWgvdWacWxCtZ6GaTXQgPwEKwCMI1HbFXTgDAqBKm5sFIu2dfD3E0e_22RJtcnith1fsD5SlcpbbSo57eX7Mu7JDeVrSowM6gOYMwjUcbWbXLqfX52HNxertubc3tzrpbuVa5bz22fj_M9Rd-12Q8x0VuvrLUQ2s7YjwOGs5VdwuwoJhwiNiljnFwzpvf3vACIkY1g</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Walton, P.W.</creator><creator>O'Flaherty, M.R.</creator><creator>Butler, M.E.</creator><creator>Compton, P.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>1993</creationdate><title>Gravimetric biosensors based on acoustic waves in thin polymer films</title><author>Walton, P.W. ; O'Flaherty, M.R. ; Butler, M.E. ; Compton, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-924c6bc40eff0baa84541e7b88a3b3a525001bb84006daeef4dd0264bb3512833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>acoustic wave sensors</topic><topic>Biological and medical sciences</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>immunosensors</topic><topic>Methods. Procedures. Technologies</topic><topic>piezoelectric biosensors</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, P.W.</creatorcontrib><creatorcontrib>O'Flaherty, M.R.</creatorcontrib><creatorcontrib>Butler, M.E.</creatorcontrib><creatorcontrib>Compton, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, P.W.</au><au>O'Flaherty, M.R.</au><au>Butler, M.E.</au><au>Compton, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravimetric biosensors based on acoustic waves in thin polymer films</atitle><jtitle>Biosensors & bioelectronics</jtitle><date>1993</date><risdate>1993</risdate><volume>8</volume><issue>9</issue><spage>401</spage><epage>407</epage><pages>401-407</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/0956-5663(93)80024-J</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 1993, Vol.8 (9), p.401-407 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_745652987 |
source | Access via ScienceDirect (Elsevier) |
subjects | acoustic wave sensors Biological and medical sciences Biosensors Biotechnology Fundamental and applied biological sciences. Psychology immunosensors Methods. Procedures. Technologies piezoelectric biosensors Various methods and equipments |
title | Gravimetric biosensors based on acoustic waves in thin polymer films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravimetric%20biosensors%20based%20on%20acoustic%20waves%20in%20thin%20polymer%20films&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Walton,%20P.W.&rft.date=1993&rft.volume=8&rft.issue=9&rft.spage=401&rft.epage=407&rft.pages=401-407&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/0956-5663(93)80024-J&rft_dat=%3Cproquest_cross%3E745652987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16787706&rft_id=info:pmid/&rft_els_id=095656639380024J&rfr_iscdi=true |