Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States

Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2010-05, Vol.18 (3), p.577-593
Hauptverfasser: Landon, Matthew K, Jurgens, Bryant C, Katz, Brian G, Eberts, Sandra M, Burow, Karen R, Crandall, Christy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 3
container_start_page 577
container_title Hydrogeology journal
container_volume 18
creator Landon, Matthew K
Jurgens, Bryant C
Katz, Brian G
Eberts, Sandra M
Burow, Karen R
Crandall, Christy A
description Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected from multiple depths in selected PSWs under pumping conditions. The chemistry of these depth-dependent samples, along with samples of the surface discharge from the PSWs, was compared to that of adjacent nested monitoring wells. The results of depth-dependent analyses from sites in Modesto (California), York (Nebraska), and Tampa (Florida) are summarized and compared. Although the exact mechanisms for transport of contaminants to the PSWs varied among these hydrogeologic settings, in all three settings the presence of wells or boreholes or natural preferential flow paths allowed water and contaminants to bypass substantial portions of the aquifer and to reach PSWs or depths in the aquifer more quickly than would have occurred in the absence of these short-circuiting flow paths. The chemistry and flow data from multiple depths was essential to developing an understanding of the dominant flow paths of contaminants to PSW in all three settings. This knowledge contributes to developing effective strategies for monitoring and protection.
doi_str_mv 10.1007/s10040-009-0531-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745643422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743662382</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-9ab9a8457249d054dbb6be04f14718b3d3fa41072e6847a18afb78b610228fc73</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEEqXwAThhcYGLwf_tHFELtFIlDmXPlpPYu66yietxVO2dD47TcEAcKi4ea-b3nmb0muYtJZ8oIfoz1FcQTEiLieQUs2fNGRVcYkKlfv74r02qxcvmFcAdqTTV_Kz5delTOeDBJz8NfioI3DGNcdqjMqO4dmI4ITjMueA-5n6JBSVXDg_uBCuSlm6MPYYlpfGEHvw4AooTOi5jiWn0yN0vMfiMwJdSXR-H5eDRborFD-i2uOLhdfMiuBH8mz_1vNl9-_rz4grf_Ph-ffHlBjtu2oJb17XOCKmZaAcixdB1qvNEBCo0NR0feHCCEs28MkI7alzotOkUJYyZ0Gt-3nzYfFOe7xcPxR4j9HVnN_l5AauFVIILxv6D5Eoxblby45Mk1UYyJlTLK_r-H_RuXvJUL7a05YYbJUWF6Ab1eQbIPtiU49Hlk6XErlHbLWpbo7Zr1HbdgW0aqOy09_kv4ydE7zZRcLN1-xzB7m4ZoZxQw1qpFf8Ncn61yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193838654</pqid></control><display><type>article</type><title>Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States</title><source>SpringerLink Journals - AutoHoldings</source><creator>Landon, Matthew K ; Jurgens, Bryant C ; Katz, Brian G ; Eberts, Sandra M ; Burow, Karen R ; Crandall, Christy A</creator><creatorcontrib>Landon, Matthew K ; Jurgens, Bryant C ; Katz, Brian G ; Eberts, Sandra M ; Burow, Karen R ; Crandall, Christy A</creatorcontrib><description>Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected from multiple depths in selected PSWs under pumping conditions. The chemistry of these depth-dependent samples, along with samples of the surface discharge from the PSWs, was compared to that of adjacent nested monitoring wells. The results of depth-dependent analyses from sites in Modesto (California), York (Nebraska), and Tampa (Florida) are summarized and compared. Although the exact mechanisms for transport of contaminants to the PSWs varied among these hydrogeologic settings, in all three settings the presence of wells or boreholes or natural preferential flow paths allowed water and contaminants to bypass substantial portions of the aquifer and to reach PSWs or depths in the aquifer more quickly than would have occurred in the absence of these short-circuiting flow paths. The chemistry and flow data from multiple depths was essential to developing an understanding of the dominant flow paths of contaminants to PSW in all three settings. This knowledge contributes to developing effective strategies for monitoring and protection.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-009-0531-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Aquatic Pollution ; Aquifers ; Boreholes ; Contaminants ; Earth and Environmental Science ; Earth Sciences ; Flow paths ; Geology ; Geophysics/Geodesy ; Hydrogeology ; Hydrology/Water Resources ; Monitoring ; Preferential flow ; Sampling ; Strategy ; Waste Water Technology ; Water depth ; Water Management ; Water pollution ; Water Pollution Control ; Water quality ; Water Quality/Water Pollution ; Wells</subject><ispartof>Hydrogeology journal, 2010-05, Vol.18 (3), p.577-593</ispartof><rights>Springer-Verlag (outside the USA) 2009</rights><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-9ab9a8457249d054dbb6be04f14718b3d3fa41072e6847a18afb78b610228fc73</citedby><cites>FETCH-LOGICAL-a389t-9ab9a8457249d054dbb6be04f14718b3d3fa41072e6847a18afb78b610228fc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-009-0531-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-009-0531-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Landon, Matthew K</creatorcontrib><creatorcontrib>Jurgens, Bryant C</creatorcontrib><creatorcontrib>Katz, Brian G</creatorcontrib><creatorcontrib>Eberts, Sandra M</creatorcontrib><creatorcontrib>Burow, Karen R</creatorcontrib><creatorcontrib>Crandall, Christy A</creatorcontrib><title>Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected from multiple depths in selected PSWs under pumping conditions. The chemistry of these depth-dependent samples, along with samples of the surface discharge from the PSWs, was compared to that of adjacent nested monitoring wells. The results of depth-dependent analyses from sites in Modesto (California), York (Nebraska), and Tampa (Florida) are summarized and compared. Although the exact mechanisms for transport of contaminants to the PSWs varied among these hydrogeologic settings, in all three settings the presence of wells or boreholes or natural preferential flow paths allowed water and contaminants to bypass substantial portions of the aquifer and to reach PSWs or depths in the aquifer more quickly than would have occurred in the absence of these short-circuiting flow paths. The chemistry and flow data from multiple depths was essential to developing an understanding of the dominant flow paths of contaminants to PSW in all three settings. This knowledge contributes to developing effective strategies for monitoring and protection.</description><subject>Aquatic Pollution</subject><subject>Aquifers</subject><subject>Boreholes</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Flow paths</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Monitoring</subject><subject>Preferential flow</subject><subject>Sampling</subject><subject>Strategy</subject><subject>Waste Water Technology</subject><subject>Water depth</subject><subject>Water Management</subject><subject>Water pollution</subject><subject>Water Pollution Control</subject><subject>Water quality</subject><subject>Water Quality/Water Pollution</subject><subject>Wells</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxSMEEqXwAThhcYGLwf_tHFELtFIlDmXPlpPYu66yietxVO2dD47TcEAcKi4ea-b3nmb0muYtJZ8oIfoz1FcQTEiLieQUs2fNGRVcYkKlfv74r02qxcvmFcAdqTTV_Kz5delTOeDBJz8NfioI3DGNcdqjMqO4dmI4ITjMueA-5n6JBSVXDg_uBCuSlm6MPYYlpfGEHvw4AooTOi5jiWn0yN0vMfiMwJdSXR-H5eDRborFD-i2uOLhdfMiuBH8mz_1vNl9-_rz4grf_Ph-ffHlBjtu2oJb17XOCKmZaAcixdB1qvNEBCo0NR0feHCCEs28MkI7alzotOkUJYyZ0Gt-3nzYfFOe7xcPxR4j9HVnN_l5AauFVIILxv6D5Eoxblby45Mk1UYyJlTLK_r-H_RuXvJUL7a05YYbJUWF6Ab1eQbIPtiU49Hlk6XErlHbLWpbo7Zr1HbdgW0aqOy09_kv4ydE7zZRcLN1-xzB7m4ZoZxQw1qpFf8Ncn61yg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Landon, Matthew K</creator><creator>Jurgens, Bryant C</creator><creator>Katz, Brian G</creator><creator>Eberts, Sandra M</creator><creator>Burow, Karen R</creator><creator>Crandall, Christy A</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SU</scope><scope>7TV</scope><scope>H97</scope></search><sort><creationdate>20100501</creationdate><title>Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States</title><author>Landon, Matthew K ; Jurgens, Bryant C ; Katz, Brian G ; Eberts, Sandra M ; Burow, Karen R ; Crandall, Christy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-9ab9a8457249d054dbb6be04f14718b3d3fa41072e6847a18afb78b610228fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aquatic Pollution</topic><topic>Aquifers</topic><topic>Boreholes</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Flow paths</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Monitoring</topic><topic>Preferential flow</topic><topic>Sampling</topic><topic>Strategy</topic><topic>Waste Water Technology</topic><topic>Water depth</topic><topic>Water Management</topic><topic>Water pollution</topic><topic>Water Pollution Control</topic><topic>Water quality</topic><topic>Water Quality/Water Pollution</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landon, Matthew K</creatorcontrib><creatorcontrib>Jurgens, Bryant C</creatorcontrib><creatorcontrib>Katz, Brian G</creatorcontrib><creatorcontrib>Eberts, Sandra M</creatorcontrib><creatorcontrib>Burow, Karen R</creatorcontrib><creatorcontrib>Crandall, Christy A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landon, Matthew K</au><au>Jurgens, Bryant C</au><au>Katz, Brian G</au><au>Eberts, Sandra M</au><au>Burow, Karen R</au><au>Crandall, Christy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>18</volume><issue>3</issue><spage>577</spage><epage>593</epage><pages>577-593</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected from multiple depths in selected PSWs under pumping conditions. The chemistry of these depth-dependent samples, along with samples of the surface discharge from the PSWs, was compared to that of adjacent nested monitoring wells. The results of depth-dependent analyses from sites in Modesto (California), York (Nebraska), and Tampa (Florida) are summarized and compared. Although the exact mechanisms for transport of contaminants to the PSWs varied among these hydrogeologic settings, in all three settings the presence of wells or boreholes or natural preferential flow paths allowed water and contaminants to bypass substantial portions of the aquifer and to reach PSWs or depths in the aquifer more quickly than would have occurred in the absence of these short-circuiting flow paths. The chemistry and flow data from multiple depths was essential to developing an understanding of the dominant flow paths of contaminants to PSW in all three settings. This knowledge contributes to developing effective strategies for monitoring and protection.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s10040-009-0531-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-2174
ispartof Hydrogeology journal, 2010-05, Vol.18 (3), p.577-593
issn 1431-2174
1435-0157
language eng
recordid cdi_proquest_miscellaneous_745643422
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Aquifers
Boreholes
Contaminants
Earth and Environmental Science
Earth Sciences
Flow paths
Geology
Geophysics/Geodesy
Hydrogeology
Hydrology/Water Resources
Monitoring
Preferential flow
Sampling
Strategy
Waste Water Technology
Water depth
Water Management
Water pollution
Water Pollution Control
Water quality
Water Quality/Water Pollution
Wells
title Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-dependent%20sampling%20to%20identify%20short-circuit%20pathways%20to%20public-supply%20wells%20in%20multiple%20aquifer%20settings%20in%20the%20United%20States&rft.jtitle=Hydrogeology%20journal&rft.au=Landon,%20Matthew%20K&rft.date=2010-05-01&rft.volume=18&rft.issue=3&rft.spage=577&rft.epage=593&rft.pages=577-593&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-009-0531-2&rft_dat=%3Cproquest_cross%3E743662382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193838654&rft_id=info:pmid/&rfr_iscdi=true