Phosphate Glass Fibre Composites for Bone Repair
We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to...
Gespeichert in:
Veröffentlicht in: | Journal of Bionic Engineering 2009-12, Vol.6 (4), p.318-323 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 4 |
container_start_page | 318 |
container_title | Journal of Bionic Engineering |
container_volume | 6 |
creator | Parsons, Andrew J. Ahmed, Ifty Haque, Papia Fitzpatrick, Ben Niazi, Muhammad I.K. Walker, Gavin S. Rudd, Chris D. |
description | We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses
in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold. |
doi_str_mv | 10.1016/S1672-6529(08)60132-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745636353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715081644</galeid><els_id>S1672652908601328</els_id><sourcerecordid>A715081644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeidetGZpE2aXskcbgoDxY_rkKYnW0bX1KQT_PdmVrwd5-LA4X1eDg9ClwRPCCb89o3wgqac0fIaixuOSUZTcYRGlOVZSklOjtHoP3KKzkLYYMxKKrIRwi9rF7q16iFZNCqEZG4rD8nMbTsXbA8hMc4n966F5BU6Zf05OjGqCXDxt8foY_7wPntMl8-Lp9l0meqcFn1aasZLQnPGoMJKlTnPGBZCFYwXQpQ1VwIAG4y5qQkVGApqsC51XVW8KqnJxuhq6O28-9xB6OXWBg1No1pwuyCLnPEslmYxORmSK9WAtK1xvVc6Tg1bq-Pnxsb7tCDxAcLzPAJsALR3IXgwsvN2q_y3JFjujcpfo3KvS2Ihf41KETk-cCHm2xV4uXE730YLB8G7AYQo7MtGMGgLrYbaetC9rJ090PAD37qL1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745636353</pqid></control><display><type>article</type><title>Phosphate Glass Fibre Composites for Bone Repair</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</creator><creatorcontrib>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</creatorcontrib><description>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses
in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1016/S1672-6529(08)60132-8</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; biocomposites ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; bone repair ; Calcium phosphate ; Engineering ; phosphate glass ; PLA ; porous</subject><ispartof>Journal of Bionic Engineering, 2009-12, Vol.6 (4), p.318-323</ispartof><rights>2009 Jilin University</rights><rights>Jilin University 2009</rights><rights>COPYRIGHT 2009 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</citedby><cites>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1672-6529(08)60132-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1672652908601328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,41467,42536,51297,65309</link.rule.ids></links><search><creatorcontrib>Parsons, Andrew J.</creatorcontrib><creatorcontrib>Ahmed, Ifty</creatorcontrib><creatorcontrib>Haque, Papia</creatorcontrib><creatorcontrib>Fitzpatrick, Ben</creatorcontrib><creatorcontrib>Niazi, Muhammad I.K.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Rudd, Chris D.</creatorcontrib><title>Phosphate Glass Fibre Composites for Bone Repair</title><title>Journal of Bionic Engineering</title><addtitle>J Bionic Eng</addtitle><description>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses
in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>biocomposites</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>bone repair</subject><subject>Calcium phosphate</subject><subject>Engineering</subject><subject>phosphate glass</subject><subject>PLA</subject><subject>porous</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeidetGZpE2aXskcbgoDxY_rkKYnW0bX1KQT_PdmVrwd5-LA4X1eDg9ClwRPCCb89o3wgqac0fIaixuOSUZTcYRGlOVZSklOjtHoP3KKzkLYYMxKKrIRwi9rF7q16iFZNCqEZG4rD8nMbTsXbA8hMc4n966F5BU6Zf05OjGqCXDxt8foY_7wPntMl8-Lp9l0meqcFn1aasZLQnPGoMJKlTnPGBZCFYwXQpQ1VwIAG4y5qQkVGApqsC51XVW8KqnJxuhq6O28-9xB6OXWBg1No1pwuyCLnPEslmYxORmSK9WAtK1xvVc6Tg1bq-Pnxsb7tCDxAcLzPAJsALR3IXgwsvN2q_y3JFjujcpfo3KvS2Ihf41KETk-cCHm2xV4uXE730YLB8G7AYQo7MtGMGgLrYbaetC9rJ090PAD37qL1g</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Parsons, Andrew J.</creator><creator>Ahmed, Ifty</creator><creator>Haque, Papia</creator><creator>Fitzpatrick, Ben</creator><creator>Niazi, Muhammad I.K.</creator><creator>Walker, Gavin S.</creator><creator>Rudd, Chris D.</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7QP</scope></search><sort><creationdate>20091201</creationdate><title>Phosphate Glass Fibre Composites for Bone Repair</title><author>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>biocomposites</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>bone repair</topic><topic>Calcium phosphate</topic><topic>Engineering</topic><topic>phosphate glass</topic><topic>PLA</topic><topic>porous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, Andrew J.</creatorcontrib><creatorcontrib>Ahmed, Ifty</creatorcontrib><creatorcontrib>Haque, Papia</creatorcontrib><creatorcontrib>Fitzpatrick, Ben</creatorcontrib><creatorcontrib>Niazi, Muhammad I.K.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Rudd, Chris D.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of Bionic Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, Andrew J.</au><au>Ahmed, Ifty</au><au>Haque, Papia</au><au>Fitzpatrick, Ben</au><au>Niazi, Muhammad I.K.</au><au>Walker, Gavin S.</au><au>Rudd, Chris D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphate Glass Fibre Composites for Bone Repair</atitle><jtitle>Journal of Bionic Engineering</jtitle><stitle>J Bionic Eng</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>6</volume><issue>4</issue><spage>318</spage><epage>323</epage><pages>318-323</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses
in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1672-6529(08)60132-8</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6529 |
ispartof | Journal of Bionic Engineering, 2009-12, Vol.6 (4), p.318-323 |
issn | 1672-6529 2543-2141 |
language | eng |
recordid | cdi_proquest_miscellaneous_745636353 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Biochemical Engineering biocomposites Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology bone repair Calcium phosphate Engineering phosphate glass PLA porous |
title | Phosphate Glass Fibre Composites for Bone Repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphate%20Glass%20Fibre%20Composites%20for%20Bone%20Repair&rft.jtitle=Journal%20of%20Bionic%20Engineering&rft.au=Parsons,%20Andrew%20J.&rft.date=2009-12-01&rft.volume=6&rft.issue=4&rft.spage=318&rft.epage=323&rft.pages=318-323&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1016/S1672-6529(08)60132-8&rft_dat=%3Cgale_proqu%3EA715081644%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745636353&rft_id=info:pmid/&rft_galeid=A715081644&rft_els_id=S1672652908601328&rfr_iscdi=true |