Phosphate Glass Fibre Composites for Bone Repair

We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bionic Engineering 2009-12, Vol.6 (4), p.318-323
Hauptverfasser: Parsons, Andrew J., Ahmed, Ifty, Haque, Papia, Fitzpatrick, Ben, Niazi, Muhammad I.K., Walker, Gavin S., Rudd, Chris D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 4
container_start_page 318
container_title Journal of Bionic Engineering
container_volume 6
creator Parsons, Andrew J.
Ahmed, Ifty
Haque, Papia
Fitzpatrick, Ben
Niazi, Muhammad I.K.
Walker, Gavin S.
Rudd, Chris D.
description We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.
doi_str_mv 10.1016/S1672-6529(08)60132-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745636353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715081644</galeid><els_id>S1672652908601328</els_id><sourcerecordid>A715081644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeidetGZpE2aXskcbgoDxY_rkKYnW0bX1KQT_PdmVrwd5-LA4X1eDg9ClwRPCCb89o3wgqac0fIaixuOSUZTcYRGlOVZSklOjtHoP3KKzkLYYMxKKrIRwi9rF7q16iFZNCqEZG4rD8nMbTsXbA8hMc4n966F5BU6Zf05OjGqCXDxt8foY_7wPntMl8-Lp9l0meqcFn1aasZLQnPGoMJKlTnPGBZCFYwXQpQ1VwIAG4y5qQkVGApqsC51XVW8KqnJxuhq6O28-9xB6OXWBg1No1pwuyCLnPEslmYxORmSK9WAtK1xvVc6Tg1bq-Pnxsb7tCDxAcLzPAJsALR3IXgwsvN2q_y3JFjujcpfo3KvS2Ihf41KETk-cCHm2xV4uXE730YLB8G7AYQo7MtGMGgLrYbaetC9rJ090PAD37qL1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745636353</pqid></control><display><type>article</type><title>Phosphate Glass Fibre Composites for Bone Repair</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</creator><creatorcontrib>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</creatorcontrib><description>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1016/S1672-6529(08)60132-8</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; biocomposites ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; bone repair ; Calcium phosphate ; Engineering ; phosphate glass ; PLA ; porous</subject><ispartof>Journal of Bionic Engineering, 2009-12, Vol.6 (4), p.318-323</ispartof><rights>2009 Jilin University</rights><rights>Jilin University 2009</rights><rights>COPYRIGHT 2009 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</citedby><cites>FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1672-6529(08)60132-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1672652908601328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,41467,42536,51297,65309</link.rule.ids></links><search><creatorcontrib>Parsons, Andrew J.</creatorcontrib><creatorcontrib>Ahmed, Ifty</creatorcontrib><creatorcontrib>Haque, Papia</creatorcontrib><creatorcontrib>Fitzpatrick, Ben</creatorcontrib><creatorcontrib>Niazi, Muhammad I.K.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Rudd, Chris D.</creatorcontrib><title>Phosphate Glass Fibre Composites for Bone Repair</title><title>Journal of Bionic Engineering</title><addtitle>J Bionic Eng</addtitle><description>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>biocomposites</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>bone repair</subject><subject>Calcium phosphate</subject><subject>Engineering</subject><subject>phosphate glass</subject><subject>PLA</subject><subject>porous</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeidetGZpE2aXskcbgoDxY_rkKYnW0bX1KQT_PdmVrwd5-LA4X1eDg9ClwRPCCb89o3wgqac0fIaixuOSUZTcYRGlOVZSklOjtHoP3KKzkLYYMxKKrIRwi9rF7q16iFZNCqEZG4rD8nMbTsXbA8hMc4n966F5BU6Zf05OjGqCXDxt8foY_7wPntMl8-Lp9l0meqcFn1aasZLQnPGoMJKlTnPGBZCFYwXQpQ1VwIAG4y5qQkVGApqsC51XVW8KqnJxuhq6O28-9xB6OXWBg1No1pwuyCLnPEslmYxORmSK9WAtK1xvVc6Tg1bq-Pnxsb7tCDxAcLzPAJsALR3IXgwsvN2q_y3JFjujcpfo3KvS2Ihf41KETk-cCHm2xV4uXE730YLB8G7AYQo7MtGMGgLrYbaetC9rJ090PAD37qL1g</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Parsons, Andrew J.</creator><creator>Ahmed, Ifty</creator><creator>Haque, Papia</creator><creator>Fitzpatrick, Ben</creator><creator>Niazi, Muhammad I.K.</creator><creator>Walker, Gavin S.</creator><creator>Rudd, Chris D.</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7QP</scope></search><sort><creationdate>20091201</creationdate><title>Phosphate Glass Fibre Composites for Bone Repair</title><author>Parsons, Andrew J. ; Ahmed, Ifty ; Haque, Papia ; Fitzpatrick, Ben ; Niazi, Muhammad I.K. ; Walker, Gavin S. ; Rudd, Chris D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9c56912455eb0aa94635088a7567889d6a8ee0f006fd1280e72f0c9cdbb6b92f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>biocomposites</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>bone repair</topic><topic>Calcium phosphate</topic><topic>Engineering</topic><topic>phosphate glass</topic><topic>PLA</topic><topic>porous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, Andrew J.</creatorcontrib><creatorcontrib>Ahmed, Ifty</creatorcontrib><creatorcontrib>Haque, Papia</creatorcontrib><creatorcontrib>Fitzpatrick, Ben</creatorcontrib><creatorcontrib>Niazi, Muhammad I.K.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Rudd, Chris D.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of Bionic Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, Andrew J.</au><au>Ahmed, Ifty</au><au>Haque, Papia</au><au>Fitzpatrick, Ben</au><au>Niazi, Muhammad I.K.</au><au>Walker, Gavin S.</au><au>Rudd, Chris D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphate Glass Fibre Composites for Bone Repair</atitle><jtitle>Journal of Bionic Engineering</jtitle><stitle>J Bionic Eng</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>6</volume><issue>4</issue><spage>318</spage><epage>323</epage><pages>318-323</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>We investigate high-modulus degradable materials intended to replace metals in biomedical applications. These are typically composites comprising a polylactide (PLA) matrix reinforced with phosphate glass fibres, which provide reinforcement similar to E-glass but are entirely degradable in water to produce, principally, calcium phosphate. We have made composites using a variety of fibre architectures, from non-woven random mats to unidirectional fibre tapes. Flexural properties in the region of 30 GPa modulus and 350 MPa strength have been achieved – directly comparable to quoted values for human cortical bone. In collaboration with other groups we have begun to consider the development of foamed systems with structures mimicking cancellous bone and this has shown significant promise. The fibres in these foamed structures provide improved creep resistance and reinforcement of the pore walls. To date the materials have exhibited excellent cellular responses in vitro and further studies are due to include consideration of the surface character of the materials and the influence of this on cell interaction, both with the composites and the glass fibres themselves, which show promise as a standalone porous scaffold.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1672-6529(08)60132-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-6529
ispartof Journal of Bionic Engineering, 2009-12, Vol.6 (4), p.318-323
issn 1672-6529
2543-2141
language eng
recordid cdi_proquest_miscellaneous_745636353
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Biochemical Engineering
biocomposites
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
bone repair
Calcium phosphate
Engineering
phosphate glass
PLA
porous
title Phosphate Glass Fibre Composites for Bone Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphate%20Glass%20Fibre%20Composites%20for%20Bone%20Repair&rft.jtitle=Journal%20of%20Bionic%20Engineering&rft.au=Parsons,%20Andrew%20J.&rft.date=2009-12-01&rft.volume=6&rft.issue=4&rft.spage=318&rft.epage=323&rft.pages=318-323&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1016/S1672-6529(08)60132-8&rft_dat=%3Cgale_proqu%3EA715081644%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745636353&rft_id=info:pmid/&rft_galeid=A715081644&rft_els_id=S1672652908601328&rfr_iscdi=true