Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre

We test the skill of a polynomial fit to reproduce the upper ocean (down to 750 m) salinity in the eastern North Atlantic (from the Canary Islands to the Iberian Peninsula, approximately 12° × 12°) as a function of temperature and depth. A historical database, constructed by merging several regional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine systems 2010-03, Vol.80 (3), p.144-159
Hauptverfasser: Machín, F., Herraiz, L., Pelegrí, J.L., Marrero-Díaz, A., Font, J., Rodríguez-Santana, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 3
container_start_page 144
container_title Journal of marine systems
container_volume 80
creator Machín, F.
Herraiz, L.
Pelegrí, J.L.
Marrero-Díaz, A.
Font, J.
Rodríguez-Santana, A.
description We test the skill of a polynomial fit to reproduce the upper ocean (down to 750 m) salinity in the eastern North Atlantic (from the Canary Islands to the Iberian Peninsula, approximately 12° × 12°) as a function of temperature and depth. A historical database, constructed by merging several regional datasets, is used. An ANOVA test is performed to determine the optimum degree of temperature and depth in the polynomial fit. The polynomial coefficients are estimated by solving an inverse model where we control the size of both coefficients and residuals. We divide the basin in 21 zones (2° × 2°) and four regions (each comprising several zones), and run the inversion for the whole basin, as well as for each individual region and zone. This allows us to assess the sensitivity of the model to changes in the spatial domain, and to investigate the spatial variability of the polynomial coefficients. Regions are defined by applying a cluster analysis to objectively group those zones with similar oceanographic properties. The seasonality of the coefficients is addressed with data from the whole basin and individual regions. We find that, for either the whole basin or individual regions, seasonal coefficients predict salinity more accurately than annual ones, but annual coefficients per zone yet provide the best results. The depth-averaged error estimating salinity is less than 0.086 psu.
doi_str_mv 10.1016/j.jmarsys.2009.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745633444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924796309002930</els_id><sourcerecordid>745633444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f51b78a06e833dccdd583fc7d99fa388cef5997bbed8be536390e21c27729793</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhy0EEkvhEZB845TFjuM45oJWFX8qVeXSu-XYk65X2dh4nEp7Q30F3pAnwcv2zmk8P803Gn-EvOdsyxnvPx62h6PNeMJty5iu2ZYx-YJs-KB0w6USL8mG6bZrlO7Fa_IG8cAY6_kgN-TpZnmEjECP0cMclgcaJ4q2vkI5_fn1u8AxQbZlzVA7D6nsaYbZlhAX3IeEn-gupTm4fwktkZY90DVViILFAnmhdzFXaldmu5TgKK5jyTFVZKYPpwxvyavJzgjvnusVuf_65f76e3P749vN9e62caLjpZkkH9VgWQ-DEN457-UgJqe81pMVw-BgklqrcQQ_jCBFLzSDlrtWqVYrLa7Ih8valOPPFbCYY0AHc70K4opGdbIXouu6Oikvky5HxAyTSTlUwyfDmTkbNwfzbNycjZ_jarxyny8c1F88BsgGXYDFgQ8ZXDE-hv9s-AvpKJNP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745633444</pqid></control><display><type>article</type><title>Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre</title><source>Elsevier ScienceDirect Journals</source><creator>Machín, F. ; Herraiz, L. ; Pelegrí, J.L. ; Marrero-Díaz, A. ; Font, J. ; Rodríguez-Santana, A.</creator><creatorcontrib>Machín, F. ; Herraiz, L. ; Pelegrí, J.L. ; Marrero-Díaz, A. ; Font, J. ; Rodríguez-Santana, A.</creatorcontrib><description>We test the skill of a polynomial fit to reproduce the upper ocean (down to 750 m) salinity in the eastern North Atlantic (from the Canary Islands to the Iberian Peninsula, approximately 12° × 12°) as a function of temperature and depth. A historical database, constructed by merging several regional datasets, is used. An ANOVA test is performed to determine the optimum degree of temperature and depth in the polynomial fit. The polynomial coefficients are estimated by solving an inverse model where we control the size of both coefficients and residuals. We divide the basin in 21 zones (2° × 2°) and four regions (each comprising several zones), and run the inversion for the whole basin, as well as for each individual region and zone. This allows us to assess the sensitivity of the model to changes in the spatial domain, and to investigate the spatial variability of the polynomial coefficients. Regions are defined by applying a cluster analysis to objectively group those zones with similar oceanographic properties. The seasonality of the coefficients is addressed with data from the whole basin and individual regions. We find that, for either the whole basin or individual regions, seasonal coefficients predict salinity more accurately than annual ones, but annual coefficients per zone yet provide the best results. The depth-averaged error estimating salinity is less than 0.086 psu.</description><identifier>ISSN: 0924-7963</identifier><identifier>EISSN: 1879-1573</identifier><identifier>DOI: 10.1016/j.jmarsys.2009.10.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>10.5–5.5 °W/33.5–37.5 °N ; Analysis of variance ; Basins ; Estimating ; Expandable bathythermograph ; Inverse ; Inverse model ; Marine ; Mathematical models ; Peninsulas ; Salinity ; Upper ocean</subject><ispartof>Journal of marine systems, 2010-03, Vol.80 (3), p.144-159</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-f51b78a06e833dccdd583fc7d99fa388cef5997bbed8be536390e21c27729793</citedby><cites>FETCH-LOGICAL-c341t-f51b78a06e833dccdd583fc7d99fa388cef5997bbed8be536390e21c27729793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924796309002930$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Machín, F.</creatorcontrib><creatorcontrib>Herraiz, L.</creatorcontrib><creatorcontrib>Pelegrí, J.L.</creatorcontrib><creatorcontrib>Marrero-Díaz, A.</creatorcontrib><creatorcontrib>Font, J.</creatorcontrib><creatorcontrib>Rodríguez-Santana, A.</creatorcontrib><title>Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre</title><title>Journal of marine systems</title><description>We test the skill of a polynomial fit to reproduce the upper ocean (down to 750 m) salinity in the eastern North Atlantic (from the Canary Islands to the Iberian Peninsula, approximately 12° × 12°) as a function of temperature and depth. A historical database, constructed by merging several regional datasets, is used. An ANOVA test is performed to determine the optimum degree of temperature and depth in the polynomial fit. The polynomial coefficients are estimated by solving an inverse model where we control the size of both coefficients and residuals. We divide the basin in 21 zones (2° × 2°) and four regions (each comprising several zones), and run the inversion for the whole basin, as well as for each individual region and zone. This allows us to assess the sensitivity of the model to changes in the spatial domain, and to investigate the spatial variability of the polynomial coefficients. Regions are defined by applying a cluster analysis to objectively group those zones with similar oceanographic properties. The seasonality of the coefficients is addressed with data from the whole basin and individual regions. We find that, for either the whole basin or individual regions, seasonal coefficients predict salinity more accurately than annual ones, but annual coefficients per zone yet provide the best results. The depth-averaged error estimating salinity is less than 0.086 psu.</description><subject>10.5–5.5 °W/33.5–37.5 °N</subject><subject>Analysis of variance</subject><subject>Basins</subject><subject>Estimating</subject><subject>Expandable bathythermograph</subject><subject>Inverse</subject><subject>Inverse model</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Peninsulas</subject><subject>Salinity</subject><subject>Upper ocean</subject><issn>0924-7963</issn><issn>1879-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQhy0EEkvhEZB845TFjuM45oJWFX8qVeXSu-XYk65X2dh4nEp7Q30F3pAnwcv2zmk8P803Gn-EvOdsyxnvPx62h6PNeMJty5iu2ZYx-YJs-KB0w6USL8mG6bZrlO7Fa_IG8cAY6_kgN-TpZnmEjECP0cMclgcaJ4q2vkI5_fn1u8AxQbZlzVA7D6nsaYbZlhAX3IeEn-gupTm4fwktkZY90DVViILFAnmhdzFXaldmu5TgKK5jyTFVZKYPpwxvyavJzgjvnusVuf_65f76e3P749vN9e62caLjpZkkH9VgWQ-DEN457-UgJqe81pMVw-BgklqrcQQ_jCBFLzSDlrtWqVYrLa7Ih8valOPPFbCYY0AHc70K4opGdbIXouu6Oikvky5HxAyTSTlUwyfDmTkbNwfzbNycjZ_jarxyny8c1F88BsgGXYDFgQ8ZXDE-hv9s-AvpKJNP</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Machín, F.</creator><creator>Herraiz, L.</creator><creator>Pelegrí, J.L.</creator><creator>Marrero-Díaz, A.</creator><creator>Font, J.</creator><creator>Rodríguez-Santana, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20100301</creationdate><title>Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre</title><author>Machín, F. ; Herraiz, L. ; Pelegrí, J.L. ; Marrero-Díaz, A. ; Font, J. ; Rodríguez-Santana, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f51b78a06e833dccdd583fc7d99fa388cef5997bbed8be536390e21c27729793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>10.5–5.5 °W/33.5–37.5 °N</topic><topic>Analysis of variance</topic><topic>Basins</topic><topic>Estimating</topic><topic>Expandable bathythermograph</topic><topic>Inverse</topic><topic>Inverse model</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Peninsulas</topic><topic>Salinity</topic><topic>Upper ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machín, F.</creatorcontrib><creatorcontrib>Herraiz, L.</creatorcontrib><creatorcontrib>Pelegrí, J.L.</creatorcontrib><creatorcontrib>Marrero-Díaz, A.</creatorcontrib><creatorcontrib>Font, J.</creatorcontrib><creatorcontrib>Rodríguez-Santana, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of marine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machín, F.</au><au>Herraiz, L.</au><au>Pelegrí, J.L.</au><au>Marrero-Díaz, A.</au><au>Font, J.</au><au>Rodríguez-Santana, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre</atitle><jtitle>Journal of marine systems</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>80</volume><issue>3</issue><spage>144</spage><epage>159</epage><pages>144-159</pages><issn>0924-7963</issn><eissn>1879-1573</eissn><abstract>We test the skill of a polynomial fit to reproduce the upper ocean (down to 750 m) salinity in the eastern North Atlantic (from the Canary Islands to the Iberian Peninsula, approximately 12° × 12°) as a function of temperature and depth. A historical database, constructed by merging several regional datasets, is used. An ANOVA test is performed to determine the optimum degree of temperature and depth in the polynomial fit. The polynomial coefficients are estimated by solving an inverse model where we control the size of both coefficients and residuals. We divide the basin in 21 zones (2° × 2°) and four regions (each comprising several zones), and run the inversion for the whole basin, as well as for each individual region and zone. This allows us to assess the sensitivity of the model to changes in the spatial domain, and to investigate the spatial variability of the polynomial coefficients. Regions are defined by applying a cluster analysis to objectively group those zones with similar oceanographic properties. The seasonality of the coefficients is addressed with data from the whole basin and individual regions. We find that, for either the whole basin or individual regions, seasonal coefficients predict salinity more accurately than annual ones, but annual coefficients per zone yet provide the best results. The depth-averaged error estimating salinity is less than 0.086 psu.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmarsys.2009.10.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-7963
ispartof Journal of marine systems, 2010-03, Vol.80 (3), p.144-159
issn 0924-7963
1879-1573
language eng
recordid cdi_proquest_miscellaneous_745633444
source Elsevier ScienceDirect Journals
subjects 10.5–5.5 °W/33.5–37.5 °N
Analysis of variance
Basins
Estimating
Expandable bathythermograph
Inverse
Inverse model
Marine
Mathematical models
Peninsulas
Salinity
Upper ocean
title Inverse modeling of salinity–temperature–depth relationships: Application to the upper eastern North Atlantic subtropical gyre
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20modeling%20of%20salinity%E2%80%93temperature%E2%80%93depth%20relationships:%20Application%20to%20the%20upper%20eastern%20North%20Atlantic%20subtropical%20gyre&rft.jtitle=Journal%20of%20marine%20systems&rft.au=Mach%C3%ADn,%20F.&rft.date=2010-03-01&rft.volume=80&rft.issue=3&rft.spage=144&rft.epage=159&rft.pages=144-159&rft.issn=0924-7963&rft.eissn=1879-1573&rft_id=info:doi/10.1016/j.jmarsys.2009.10.005&rft_dat=%3Cproquest_cross%3E745633444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745633444&rft_id=info:pmid/&rft_els_id=S0924796309002930&rfr_iscdi=true