Distribution and interplay of geologic processes on Titan from Cassini radar data
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta–T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2010-02, Vol.205 (2), p.540-558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 2 |
container_start_page | 540 |
container_title | Icarus (New York, N.Y. 1962) |
container_volume | 205 |
creator | Lopes, R.M.C. Stofan, E.R. Peckyno, R. Radebaugh, J. Mitchell, K.L. Mitri, G. Wood, C.A. Kirk, R.L. Wall, S.D. Lunine, J.I. Hayes, A. Lorenz, R. Farr, T. Wye, L. Craig, J. Ollerenshaw, R.J. Janssen, M. LeGall, A. Paganelli, F. West, R. Stiles, B. Callahan, P. Anderson, Y. Valora, P. Soderblom, L. |
description | The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta–T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350
m to ∼2
km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth – volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. |
doi_str_mv | 10.1016/j.icarus.2009.08.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745633223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103509003546</els_id><sourcerecordid>745633223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-1aa8b550e67009b875b3504c439991d07e20c41b5bef2f667ff4906233d4afa43</originalsourceid><addsrcrecordid>eNp9kM2LFDEQxYMoOI7-Bx5yEU_dVj76IxdBxvUDFkRYz6E6XVky9HTGVI-w_71ZZvFoXeryXr1XPyHeKmgVqP7DsU0By4VbDeBaGFtQ8EzsFDhodG_Nc7EDUK5RYLqX4hXzEQC60Zmd-Pk58VbSdNlSXiWus0zrRuW84IPMUd5TXvJ9CvJcciBmYllld2nDVcaST_KAzGlNsuCMRc644WvxIuLC9OZp78WvLzd3h2_N7Y-v3w-fbhs0Tm2NQhynrgPqh1p6GoduMh3YYI1zTs0wkIZg1dRNFHXs-yFG66DXxswWI1qzF--vd2u13xfizZ8SB1oWXClf2A-2643R1bAX9qoMJTMXiv5c0gnLg1fgHwH6o78C9I8APYy-Aqy2d08ByAGXWHANif95tba6Tl91H686qt_-SVQ8h0RroDkVCpufc_p_0F-kEof-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745633223</pqid></control><display><type>article</type><title>Distribution and interplay of geologic processes on Titan from Cassini radar data</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lopes, R.M.C. ; Stofan, E.R. ; Peckyno, R. ; Radebaugh, J. ; Mitchell, K.L. ; Mitri, G. ; Wood, C.A. ; Kirk, R.L. ; Wall, S.D. ; Lunine, J.I. ; Hayes, A. ; Lorenz, R. ; Farr, T. ; Wye, L. ; Craig, J. ; Ollerenshaw, R.J. ; Janssen, M. ; LeGall, A. ; Paganelli, F. ; West, R. ; Stiles, B. ; Callahan, P. ; Anderson, Y. ; Valora, P. ; Soderblom, L.</creator><creatorcontrib>Lopes, R.M.C. ; Stofan, E.R. ; Peckyno, R. ; Radebaugh, J. ; Mitchell, K.L. ; Mitri, G. ; Wood, C.A. ; Kirk, R.L. ; Wall, S.D. ; Lunine, J.I. ; Hayes, A. ; Lorenz, R. ; Farr, T. ; Wye, L. ; Craig, J. ; Ollerenshaw, R.J. ; Janssen, M. ; LeGall, A. ; Paganelli, F. ; West, R. ; Stiles, B. ; Callahan, P. ; Anderson, Y. ; Valora, P. ; Soderblom, L. ; the Cassini RADAR Team</creatorcontrib><description>The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta–T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350
m to ∼2
km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth – volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2009.08.010</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Geological processes ; Radar observations ; Solar system ; Titan</subject><ispartof>Icarus (New York, N.Y. 1962), 2010-02, Vol.205 (2), p.540-558</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-1aa8b550e67009b875b3504c439991d07e20c41b5bef2f667ff4906233d4afa43</citedby><cites>FETCH-LOGICAL-a391t-1aa8b550e67009b875b3504c439991d07e20c41b5bef2f667ff4906233d4afa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019103509003546$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22422226$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, R.M.C.</creatorcontrib><creatorcontrib>Stofan, E.R.</creatorcontrib><creatorcontrib>Peckyno, R.</creatorcontrib><creatorcontrib>Radebaugh, J.</creatorcontrib><creatorcontrib>Mitchell, K.L.</creatorcontrib><creatorcontrib>Mitri, G.</creatorcontrib><creatorcontrib>Wood, C.A.</creatorcontrib><creatorcontrib>Kirk, R.L.</creatorcontrib><creatorcontrib>Wall, S.D.</creatorcontrib><creatorcontrib>Lunine, J.I.</creatorcontrib><creatorcontrib>Hayes, A.</creatorcontrib><creatorcontrib>Lorenz, R.</creatorcontrib><creatorcontrib>Farr, T.</creatorcontrib><creatorcontrib>Wye, L.</creatorcontrib><creatorcontrib>Craig, J.</creatorcontrib><creatorcontrib>Ollerenshaw, R.J.</creatorcontrib><creatorcontrib>Janssen, M.</creatorcontrib><creatorcontrib>LeGall, A.</creatorcontrib><creatorcontrib>Paganelli, F.</creatorcontrib><creatorcontrib>West, R.</creatorcontrib><creatorcontrib>Stiles, B.</creatorcontrib><creatorcontrib>Callahan, P.</creatorcontrib><creatorcontrib>Anderson, Y.</creatorcontrib><creatorcontrib>Valora, P.</creatorcontrib><creatorcontrib>Soderblom, L.</creatorcontrib><creatorcontrib>the Cassini RADAR Team</creatorcontrib><title>Distribution and interplay of geologic processes on Titan from Cassini radar data</title><title>Icarus (New York, N.Y. 1962)</title><description>The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta–T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350
m to ∼2
km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth – volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geological processes</subject><subject>Radar observations</subject><subject>Solar system</subject><subject>Titan</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM2LFDEQxYMoOI7-Bx5yEU_dVj76IxdBxvUDFkRYz6E6XVky9HTGVI-w_71ZZvFoXeryXr1XPyHeKmgVqP7DsU0By4VbDeBaGFtQ8EzsFDhodG_Nc7EDUK5RYLqX4hXzEQC60Zmd-Pk58VbSdNlSXiWus0zrRuW84IPMUd5TXvJ9CvJcciBmYllld2nDVcaST_KAzGlNsuCMRc644WvxIuLC9OZp78WvLzd3h2_N7Y-v3w-fbhs0Tm2NQhynrgPqh1p6GoduMh3YYI1zTs0wkIZg1dRNFHXs-yFG66DXxswWI1qzF--vd2u13xfizZ8SB1oWXClf2A-2643R1bAX9qoMJTMXiv5c0gnLg1fgHwH6o78C9I8APYy-Aqy2d08ByAGXWHANif95tba6Tl91H686qt_-SVQ8h0RroDkVCpufc_p_0F-kEof-</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Lopes, R.M.C.</creator><creator>Stofan, E.R.</creator><creator>Peckyno, R.</creator><creator>Radebaugh, J.</creator><creator>Mitchell, K.L.</creator><creator>Mitri, G.</creator><creator>Wood, C.A.</creator><creator>Kirk, R.L.</creator><creator>Wall, S.D.</creator><creator>Lunine, J.I.</creator><creator>Hayes, A.</creator><creator>Lorenz, R.</creator><creator>Farr, T.</creator><creator>Wye, L.</creator><creator>Craig, J.</creator><creator>Ollerenshaw, R.J.</creator><creator>Janssen, M.</creator><creator>LeGall, A.</creator><creator>Paganelli, F.</creator><creator>West, R.</creator><creator>Stiles, B.</creator><creator>Callahan, P.</creator><creator>Anderson, Y.</creator><creator>Valora, P.</creator><creator>Soderblom, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20100201</creationdate><title>Distribution and interplay of geologic processes on Titan from Cassini radar data</title><author>Lopes, R.M.C. ; Stofan, E.R. ; Peckyno, R. ; Radebaugh, J. ; Mitchell, K.L. ; Mitri, G. ; Wood, C.A. ; Kirk, R.L. ; Wall, S.D. ; Lunine, J.I. ; Hayes, A. ; Lorenz, R. ; Farr, T. ; Wye, L. ; Craig, J. ; Ollerenshaw, R.J. ; Janssen, M. ; LeGall, A. ; Paganelli, F. ; West, R. ; Stiles, B. ; Callahan, P. ; Anderson, Y. ; Valora, P. ; Soderblom, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-1aa8b550e67009b875b3504c439991d07e20c41b5bef2f667ff4906233d4afa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geological processes</topic><topic>Radar observations</topic><topic>Solar system</topic><topic>Titan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, R.M.C.</creatorcontrib><creatorcontrib>Stofan, E.R.</creatorcontrib><creatorcontrib>Peckyno, R.</creatorcontrib><creatorcontrib>Radebaugh, J.</creatorcontrib><creatorcontrib>Mitchell, K.L.</creatorcontrib><creatorcontrib>Mitri, G.</creatorcontrib><creatorcontrib>Wood, C.A.</creatorcontrib><creatorcontrib>Kirk, R.L.</creatorcontrib><creatorcontrib>Wall, S.D.</creatorcontrib><creatorcontrib>Lunine, J.I.</creatorcontrib><creatorcontrib>Hayes, A.</creatorcontrib><creatorcontrib>Lorenz, R.</creatorcontrib><creatorcontrib>Farr, T.</creatorcontrib><creatorcontrib>Wye, L.</creatorcontrib><creatorcontrib>Craig, J.</creatorcontrib><creatorcontrib>Ollerenshaw, R.J.</creatorcontrib><creatorcontrib>Janssen, M.</creatorcontrib><creatorcontrib>LeGall, A.</creatorcontrib><creatorcontrib>Paganelli, F.</creatorcontrib><creatorcontrib>West, R.</creatorcontrib><creatorcontrib>Stiles, B.</creatorcontrib><creatorcontrib>Callahan, P.</creatorcontrib><creatorcontrib>Anderson, Y.</creatorcontrib><creatorcontrib>Valora, P.</creatorcontrib><creatorcontrib>Soderblom, L.</creatorcontrib><creatorcontrib>the Cassini RADAR Team</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, R.M.C.</au><au>Stofan, E.R.</au><au>Peckyno, R.</au><au>Radebaugh, J.</au><au>Mitchell, K.L.</au><au>Mitri, G.</au><au>Wood, C.A.</au><au>Kirk, R.L.</au><au>Wall, S.D.</au><au>Lunine, J.I.</au><au>Hayes, A.</au><au>Lorenz, R.</au><au>Farr, T.</au><au>Wye, L.</au><au>Craig, J.</au><au>Ollerenshaw, R.J.</au><au>Janssen, M.</au><au>LeGall, A.</au><au>Paganelli, F.</au><au>West, R.</au><au>Stiles, B.</au><au>Callahan, P.</au><au>Anderson, Y.</au><au>Valora, P.</au><au>Soderblom, L.</au><aucorp>the Cassini RADAR Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution and interplay of geologic processes on Titan from Cassini radar data</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>205</volume><issue>2</issue><spage>540</spage><epage>558</epage><pages>540-558</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta–T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350
m to ∼2
km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth – volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2009.08.010</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-1035 |
ispartof | Icarus (New York, N.Y. 1962), 2010-02, Vol.205 (2), p.540-558 |
issn | 0019-1035 1090-2643 |
language | eng |
recordid | cdi_proquest_miscellaneous_745633223 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Astronomy Earth, ocean, space Exact sciences and technology Geological processes Radar observations Solar system Titan |
title | Distribution and interplay of geologic processes on Titan from Cassini radar data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20and%20interplay%20of%20geologic%20processes%20on%20Titan%20from%20Cassini%20radar%20data&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Lopes,%20R.M.C.&rft.aucorp=the%20Cassini%20RADAR%20Team&rft.date=2010-02-01&rft.volume=205&rft.issue=2&rft.spage=540&rft.epage=558&rft.pages=540-558&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2009.08.010&rft_dat=%3Cproquest_cross%3E745633223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745633223&rft_id=info:pmid/&rft_els_id=S0019103509003546&rfr_iscdi=true |