Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells

The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-05, Vol.195 (9), p.2782-2788
Hauptverfasser: Hua, Bin, Pu, Jian, Lu, Fengshuang, Zhang, Jianfu, Chi, Bo, Jian, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2788
container_issue 9
container_start_page 2782
container_title Journal of power sources
container_volume 195
creator Hua, Bin
Pu, Jian
Lu, Fengshuang
Zhang, Jianfu
Chi, Bo
Jian, Li
description The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr 2O 3 and the top Mn 2O 3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1 × 10 −14 to 7.6 × 10 −14 g 2 cm −4 s −1, and the measured area specific resistance at 750 °C after 1000 h oxidation is around 10 mΩ cm 2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn 2O 3, and in turn, to enhance the oxidation resistance and electrical property.
doi_str_mv 10.1016/j.jpowsour.2009.08.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745606015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309015171</els_id><sourcerecordid>745606015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</originalsourceid><addsrcrecordid>eNqNUcFu1DAQtRBILG1_ofIFcUqY2BvbuYEWCkiVuJSz5ThjySsnDrZT6I1_4A_5ErzawhXmMof3Zt7Me4Rcd9B20InXx_a4xm85bqllAEMLqgUpn5BdpyRvmOz7p2QHXKpGyp4_Jy9yPgJA10nYkeUd3mOI64xLodFRQ2_w14-fh0RNCPGBupioXwomG5cFbaFmXYO3pvi4VOCMzTh5U5AWnFdMpmwJaY7BTzR-9xNSt2GgFkPIl-SZMyHj1WO_IF9u3t8dPja3nz98Ory9beweRGnYAGxgbkAQvRHOGOBW7pGPOHEBKIRxDIdxtMz0fASmhFRW1R8HGKWdJL8gr8571xS_bpiLnn0-XWAWjFvWct8LEND1_8HkneJ7dtopzkybYs4JnV6Tn0160B3oUxL6qP8koU9JaFC6JlEHXz5KmGxNcMks1ue_04xxVUtU3pszD6sz9x6TztbjYqu7qVqvp-j_JfUbLDuleg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743183427</pqid></control><display><type>article</type><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</creator><creatorcontrib>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</creatorcontrib><description>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr 2O 3 and the top Mn 2O 3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1 × 10 −14 to 7.6 × 10 −14 g 2 cm −4 s −1, and the measured area specific resistance at 750 °C after 1000 h oxidation is around 10 mΩ cm 2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn 2O 3, and in turn, to enhance the oxidation resistance and electrical property.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.08.077</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Area specific resistance ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fe–Cr alloy ; Fuel cells ; Metallic interconnect ; Oxidation kinetics ; Solid oxide fuel cell</subject><ispartof>Journal of power sources, 2010-05, Vol.195 (9), p.2782-2788</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</citedby><cites>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775309015171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22388886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Bin</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Lu, Fengshuang</creatorcontrib><creatorcontrib>Zhang, Jianfu</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Jian, Li</creatorcontrib><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><title>Journal of power sources</title><description>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr 2O 3 and the top Mn 2O 3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1 × 10 −14 to 7.6 × 10 −14 g 2 cm −4 s −1, and the measured area specific resistance at 750 °C after 1000 h oxidation is around 10 mΩ cm 2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn 2O 3, and in turn, to enhance the oxidation resistance and electrical property.</description><subject>Applied sciences</subject><subject>Area specific resistance</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fe–Cr alloy</subject><subject>Fuel cells</subject><subject>Metallic interconnect</subject><subject>Oxidation kinetics</subject><subject>Solid oxide fuel cell</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1DAQtRBILG1_ofIFcUqY2BvbuYEWCkiVuJSz5ThjySsnDrZT6I1_4A_5ErzawhXmMof3Zt7Me4Rcd9B20InXx_a4xm85bqllAEMLqgUpn5BdpyRvmOz7p2QHXKpGyp4_Jy9yPgJA10nYkeUd3mOI64xLodFRQ2_w14-fh0RNCPGBupioXwomG5cFbaFmXYO3pvi4VOCMzTh5U5AWnFdMpmwJaY7BTzR-9xNSt2GgFkPIl-SZMyHj1WO_IF9u3t8dPja3nz98Ory9beweRGnYAGxgbkAQvRHOGOBW7pGPOHEBKIRxDIdxtMz0fASmhFRW1R8HGKWdJL8gr8571xS_bpiLnn0-XWAWjFvWct8LEND1_8HkneJ7dtopzkybYs4JnV6Tn0160B3oUxL6qP8koU9JaFC6JlEHXz5KmGxNcMks1ue_04xxVUtU3pszD6sz9x6TztbjYqu7qVqvp-j_JfUbLDuleg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Hua, Bin</creator><creator>Pu, Jian</creator><creator>Lu, Fengshuang</creator><creator>Zhang, Jianfu</creator><creator>Chi, Bo</creator><creator>Jian, Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20100501</creationdate><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><author>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Area specific resistance</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fe–Cr alloy</topic><topic>Fuel cells</topic><topic>Metallic interconnect</topic><topic>Oxidation kinetics</topic><topic>Solid oxide fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Bin</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Lu, Fengshuang</creatorcontrib><creatorcontrib>Zhang, Jianfu</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Jian, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Bin</au><au>Pu, Jian</au><au>Lu, Fengshuang</au><au>Zhang, Jianfu</au><au>Chi, Bo</au><au>Jian, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>195</volume><issue>9</issue><spage>2782</spage><epage>2788</epage><pages>2782-2788</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr 2O 3 and the top Mn 2O 3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1 × 10 −14 to 7.6 × 10 −14 g 2 cm −4 s −1, and the measured area specific resistance at 750 °C after 1000 h oxidation is around 10 mΩ cm 2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn 2O 3, and in turn, to enhance the oxidation resistance and electrical property.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.08.077</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-05, Vol.195 (9), p.2782-2788
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_745606015
source Elsevier ScienceDirect Journals
subjects Applied sciences
Area specific resistance
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fe–Cr alloy
Fuel cells
Metallic interconnect
Oxidation kinetics
Solid oxide fuel cell
title Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Fe%E2%80%93Cr%20alloy%20for%20interconnect%20application%20in%20intermediate%20temperature%20solid%20oxide%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Hua,%20Bin&rft.date=2010-05-01&rft.volume=195&rft.issue=9&rft.spage=2782&rft.epage=2788&rft.pages=2782-2788&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.08.077&rft_dat=%3Cproquest_cross%3E745606015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743183427&rft_id=info:pmid/&rft_els_id=S0378775309015171&rfr_iscdi=true