Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells
The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05 wt.% Mn, 0.52 wt.% Ti, 2.09 wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750 °C in air for up to 1000 h. With a coefficient of thermal expansi...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010-05, Vol.195 (9), p.2782-2788 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2788 |
---|---|
container_issue | 9 |
container_start_page | 2782 |
container_title | Journal of power sources |
container_volume | 195 |
creator | Hua, Bin Pu, Jian Lu, Fengshuang Zhang, Jianfu Chi, Bo Jian, Li |
description | The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05
wt.% Mn, 0.52
wt.% Ti, 2.09
wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750
°C in air for up to 1000
h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr
2O
3 and the top Mn
2O
3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1
×
10
−14 to 7.6
×
10
−14
g
2
cm
−4
s
−1, and the measured area specific resistance at 750
°C after 1000
h oxidation is around 10
mΩ
cm
2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn
2O
3, and in turn, to enhance the oxidation resistance and electrical property. |
doi_str_mv | 10.1016/j.jpowsour.2009.08.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745606015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309015171</els_id><sourcerecordid>745606015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</originalsourceid><addsrcrecordid>eNqNUcFu1DAQtRBILG1_ofIFcUqY2BvbuYEWCkiVuJSz5ThjySsnDrZT6I1_4A_5ErzawhXmMof3Zt7Me4Rcd9B20InXx_a4xm85bqllAEMLqgUpn5BdpyRvmOz7p2QHXKpGyp4_Jy9yPgJA10nYkeUd3mOI64xLodFRQ2_w14-fh0RNCPGBupioXwomG5cFbaFmXYO3pvi4VOCMzTh5U5AWnFdMpmwJaY7BTzR-9xNSt2GgFkPIl-SZMyHj1WO_IF9u3t8dPja3nz98Ory9beweRGnYAGxgbkAQvRHOGOBW7pGPOHEBKIRxDIdxtMz0fASmhFRW1R8HGKWdJL8gr8571xS_bpiLnn0-XWAWjFvWct8LEND1_8HkneJ7dtopzkybYs4JnV6Tn0160B3oUxL6qP8koU9JaFC6JlEHXz5KmGxNcMks1ue_04xxVUtU3pszD6sz9x6TztbjYqu7qVqvp-j_JfUbLDuleg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743183427</pqid></control><display><type>article</type><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</creator><creatorcontrib>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</creatorcontrib><description>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05
wt.% Mn, 0.52
wt.% Ti, 2.09
wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750
°C in air for up to 1000
h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr
2O
3 and the top Mn
2O
3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1
×
10
−14 to 7.6
×
10
−14
g
2
cm
−4
s
−1, and the measured area specific resistance at 750
°C after 1000
h oxidation is around 10
mΩ
cm
2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn
2O
3, and in turn, to enhance the oxidation resistance and electrical property.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.08.077</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Area specific resistance ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fe–Cr alloy ; Fuel cells ; Metallic interconnect ; Oxidation kinetics ; Solid oxide fuel cell</subject><ispartof>Journal of power sources, 2010-05, Vol.195 (9), p.2782-2788</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</citedby><cites>FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775309015171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22388886$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Bin</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Lu, Fengshuang</creatorcontrib><creatorcontrib>Zhang, Jianfu</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Jian, Li</creatorcontrib><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><title>Journal of power sources</title><description>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05
wt.% Mn, 0.52
wt.% Ti, 2.09
wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750
°C in air for up to 1000
h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr
2O
3 and the top Mn
2O
3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1
×
10
−14 to 7.6
×
10
−14
g
2
cm
−4
s
−1, and the measured area specific resistance at 750
°C after 1000
h oxidation is around 10
mΩ
cm
2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn
2O
3, and in turn, to enhance the oxidation resistance and electrical property.</description><subject>Applied sciences</subject><subject>Area specific resistance</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fe–Cr alloy</subject><subject>Fuel cells</subject><subject>Metallic interconnect</subject><subject>Oxidation kinetics</subject><subject>Solid oxide fuel cell</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUcFu1DAQtRBILG1_ofIFcUqY2BvbuYEWCkiVuJSz5ThjySsnDrZT6I1_4A_5ErzawhXmMof3Zt7Me4Rcd9B20InXx_a4xm85bqllAEMLqgUpn5BdpyRvmOz7p2QHXKpGyp4_Jy9yPgJA10nYkeUd3mOI64xLodFRQ2_w14-fh0RNCPGBupioXwomG5cFbaFmXYO3pvi4VOCMzTh5U5AWnFdMpmwJaY7BTzR-9xNSt2GgFkPIl-SZMyHj1WO_IF9u3t8dPja3nz98Ory9beweRGnYAGxgbkAQvRHOGOBW7pGPOHEBKIRxDIdxtMz0fASmhFRW1R8HGKWdJL8gr8571xS_bpiLnn0-XWAWjFvWct8LEND1_8HkneJ7dtopzkybYs4JnV6Tn0160B3oUxL6qP8koU9JaFC6JlEHXz5KmGxNcMks1ue_04xxVUtU3pszD6sz9x6TztbjYqu7qVqvp-j_JfUbLDuleg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Hua, Bin</creator><creator>Pu, Jian</creator><creator>Lu, Fengshuang</creator><creator>Zhang, Jianfu</creator><creator>Chi, Bo</creator><creator>Jian, Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20100501</creationdate><title>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</title><author>Hua, Bin ; Pu, Jian ; Lu, Fengshuang ; Zhang, Jianfu ; Chi, Bo ; Jian, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-290292f9e065a6faa03c74e3bed360e66af2e9bbc2a53b028678c803790b7cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Area specific resistance</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fe–Cr alloy</topic><topic>Fuel cells</topic><topic>Metallic interconnect</topic><topic>Oxidation kinetics</topic><topic>Solid oxide fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Bin</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><creatorcontrib>Lu, Fengshuang</creatorcontrib><creatorcontrib>Zhang, Jianfu</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Jian, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Bin</au><au>Pu, Jian</au><au>Lu, Fengshuang</au><au>Zhang, Jianfu</au><au>Chi, Bo</au><au>Jian, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>195</volume><issue>9</issue><spage>2782</spage><epage>2788</epage><pages>2782-2788</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The oxidation behavior and electrical property of a newly designed Fe–Cr alloy with addition of 1.05
wt.% Mn, 0.52
wt.% Ti, 2.09
wt.% Mo and other elements, such as La, Y and Zr have been investigated isothermally or cyclically at 750
°C in air for up to 1000
h. With a coefficient of thermal expansion matched to SOFC cell components, the alloy demonstrates excellent oxidation resistance and low area specific resistance of the oxide scale. The thermally grown oxide scale presents a multi-layered structure with conductive Mn–Cr spinel in-between the underneath Cr
2O
3 and the top Mn
2O
3. The oxidation rate constants obtained under both isothermal and cyclic oxidation condition are in the range of 5.1
×
10
−14 to 7.6
×
10
−14
g
2
cm
−4
s
−1, and the measured area specific resistance at 750
°C after 1000
h oxidation is around 10
mΩ
cm
2, lower than that of the conventional Fe–Cr stainless steels and comparable with that of the Ni-based alloys. Thermal cycling seems to improve the oxide scale adherence and promotes the formation of the highly conductive Mn
2O
3, and in turn, to enhance the oxidation resistance and electrical property.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.08.077</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2010-05, Vol.195 (9), p.2782-2788 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_745606015 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Area specific resistance Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fe–Cr alloy Fuel cells Metallic interconnect Oxidation kinetics Solid oxide fuel cell |
title | Development of a Fe–Cr alloy for interconnect application in intermediate temperature solid oxide fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Fe%E2%80%93Cr%20alloy%20for%20interconnect%20application%20in%20intermediate%20temperature%20solid%20oxide%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Hua,%20Bin&rft.date=2010-05-01&rft.volume=195&rft.issue=9&rft.spage=2782&rft.epage=2788&rft.pages=2782-2788&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.08.077&rft_dat=%3Cproquest_cross%3E745606015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743183427&rft_id=info:pmid/&rft_els_id=S0378775309015171&rfr_iscdi=true |