Front propagation and phase field theory

The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 1993-03, Vol.31 (2), p.439-469
Hauptverfasser: BARLES, G, SONER, H. M, SOUGANIDIS, P. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 2
container_start_page 439
container_title SIAM journal on control and optimization
container_volume 31
creator BARLES, G
SONER, H. M
SOUGANIDIS, P. E
description The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature and the starshape conditions.
doi_str_mv 10.1137/0331021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745086372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600704021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b86a53e1a4304cc01f043ec4b94acfcc63480586a46a171c2eb8ef23862e375c3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKv4FxYR9LKayWR3k6MUq0LBi57DNE3slu1mTbaH_nsjFgVPc3k83nyMXQK_A8DmniMCF3DEJsB1VTaA6phNONZYchD6lJ2ltOEcpAQ5YbfzGPqxGGIY6IPGNvQF9atiWFNyhW9dtyrGtQtxf85OPHXJXRzulL3PH99mz-Xi9ell9rAoLQKM5VLVVKEDksiltRw8l-isXGpJ1ltbo1S8ypCsCRqwwi2V8wJVLRw2lcUpu_nx5qTPnUuj2bbJuq6j3oVdMo2suKqxEZm8-kduwi72Oc5oUSmVv1d_OhtDStF5M8R2S3FvgJvvvcxhr0xeH3SULHU-Um_b9IvLHK21xi_ut2Zv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925880958</pqid></control><display><type>article</type><title>Front propagation and phase field theory</title><source>SIAM Journals</source><creator>BARLES, G ; SONER, H. M ; SOUGANIDIS, P. E</creator><creatorcontrib>BARLES, G ; SONER, H. M ; SOUGANIDIS, P. E</creatorcontrib><description>The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature and the starshape conditions.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0331021</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Continuum mechanics ; Differential equations ; Diffusion ; Exact sciences and technology ; Flame research ; Function theory, analysis ; Geometry ; Mathematical methods in physics ; Mathematical models ; Partial differential equations ; Phase transitions ; Physics ; Propagation ; Reaction kinetics ; Set theory ; Viscosity</subject><ispartof>SIAM journal on control and optimization, 1993-03, Vol.31 (2), p.439-469</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1993 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-b86a53e1a4304cc01f043ec4b94acfcc63480586a46a171c2eb8ef23862e375c3</citedby><cites>FETCH-LOGICAL-c311t-b86a53e1a4304cc01f043ec4b94acfcc63480586a46a171c2eb8ef23862e375c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4586999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BARLES, G</creatorcontrib><creatorcontrib>SONER, H. M</creatorcontrib><creatorcontrib>SOUGANIDIS, P. E</creatorcontrib><title>Front propagation and phase field theory</title><title>SIAM journal on control and optimization</title><description>The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature and the starshape conditions.</description><subject>Applied mathematics</subject><subject>Continuum mechanics</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Flame research</subject><subject>Function theory, analysis</subject><subject>Geometry</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Propagation</subject><subject>Reaction kinetics</subject><subject>Set theory</subject><subject>Viscosity</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEFLAzEQRoMoWKv4FxYR9LKayWR3k6MUq0LBi57DNE3slu1mTbaH_nsjFgVPc3k83nyMXQK_A8DmniMCF3DEJsB1VTaA6phNONZYchD6lJ2ltOEcpAQ5YbfzGPqxGGIY6IPGNvQF9atiWFNyhW9dtyrGtQtxf85OPHXJXRzulL3PH99mz-Xi9ell9rAoLQKM5VLVVKEDksiltRw8l-isXGpJ1ltbo1S8ypCsCRqwwi2V8wJVLRw2lcUpu_nx5qTPnUuj2bbJuq6j3oVdMo2suKqxEZm8-kduwi72Oc5oUSmVv1d_OhtDStF5M8R2S3FvgJvvvcxhr0xeH3SULHU-Um_b9IvLHK21xi_ut2Zv</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>BARLES, G</creator><creator>SONER, H. M</creator><creator>SOUGANIDIS, P. E</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7TC</scope></search><sort><creationdate>19930301</creationdate><title>Front propagation and phase field theory</title><author>BARLES, G ; SONER, H. M ; SOUGANIDIS, P. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b86a53e1a4304cc01f043ec4b94acfcc63480586a46a171c2eb8ef23862e375c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied mathematics</topic><topic>Continuum mechanics</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Flame research</topic><topic>Function theory, analysis</topic><topic>Geometry</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Propagation</topic><topic>Reaction kinetics</topic><topic>Set theory</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARLES, G</creatorcontrib><creatorcontrib>SONER, H. M</creatorcontrib><creatorcontrib>SOUGANIDIS, P. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARLES, G</au><au>SONER, H. M</au><au>SOUGANIDIS, P. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Front propagation and phase field theory</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1993-03-01</date><risdate>1993</risdate><volume>31</volume><issue>2</issue><spage>439</spage><epage>469</epage><pages>439-469</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature and the starshape conditions.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0331021</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 1993-03, Vol.31 (2), p.439-469
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_miscellaneous_745086372
source SIAM Journals
subjects Applied mathematics
Continuum mechanics
Differential equations
Diffusion
Exact sciences and technology
Flame research
Function theory, analysis
Geometry
Mathematical methods in physics
Mathematical models
Partial differential equations
Phase transitions
Physics
Propagation
Reaction kinetics
Set theory
Viscosity
title Front propagation and phase field theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Front%20propagation%20and%20phase%20field%20theory&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=BARLES,%20G&rft.date=1993-03-01&rft.volume=31&rft.issue=2&rft.spage=439&rft.epage=469&rft.pages=439-469&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/0331021&rft_dat=%3Cproquest_cross%3E2600704021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925880958&rft_id=info:pmid/&rfr_iscdi=true