Long-term relative stability of thermistors: Part 2
The relative stability of four glass–bead thermistors has been analyzed for 66 months to determine if thermistors have sufficient relative stability to be used as feedback sensors for milliKelvin levels of temperature control. This paper provides additional drift data and new correlations beyond tho...
Gespeichert in:
Veröffentlicht in: | Precision engineering 2002-07, Vol.26 (3), p.340-345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 3 |
container_start_page | 340 |
container_title | Precision engineering |
container_volume | 26 |
creator | Lawton, K.M. Patterson, S.R. |
description | The relative stability of four glass–bead thermistors has been analyzed for 66 months to determine if thermistors have sufficient relative stability to be used as feedback sensors for milliKelvin levels of temperature control. This paper provides additional drift data and new correlations beyond those described in a previous paper [Prec Eng, J Int Soc Prec Eng Nanotechnol 2001;25:24–8]. The thermistors were measured at 20±0.1
°C using commercial two-wire instrumentation. The thermistors have a nominal resistance of 12.5
kΩ and sensitivity of −4.5%/°C at 20
°C. They are nested together inside several layers of thermal resistance and capacitance which are held at nominal 20
°C with a heater controller that maintains the thermistor nest above the 19
°C ambient air temperature. After correction for instrumentation drift with two high-stability reference resistors, the average relative RMS drift of the thermistors is 48±16
μK, with an RMS fitted drift rate of 0.19±0.08
μK per week. |
doi_str_mv | 10.1016/S0141-6359(02)00110-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744721968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141635902001101</els_id><sourcerecordid>744721968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-94fac83ca43c2b222739be08ff8a2b22c6f959af9a9b4e64815e63ae6e9043b63</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKEXX4fq5NE28SKy-IIFBfUc0uxEI91Wk-zCfnu7D_Smp2GY339m-BFySOGcAi0vnoEKmpe8UKfAzgAohZxukQGVFc8Zr9g2Gfwgu2Qvxg8AqCSIAeHjrn3LE4ZpFrAxyc8xi8nUvvFpkXUuS-_9zMfUhXiZPZmQMrZPdpxpIh5s6pC83t68jO7z8ePdw-h6nFsBkHIlnLGSWyO4ZTVjrOKqRpDOSbPsbelUoYxTRtUCSyFpgSU3WKICweuSD8nJeu9n6L5mGJPuH7HYNKbFbhZ1JUTFqCplTx7_SbKKSskU78FiDdrQxRjQ6c_gpyYsNAW9lKlXMvXSlAamVzI17XNHmwMmWtO4YFrr42-YV0rJoui5qzWHvZe5x6Cj9dhanPiANulJ5_-59A19UIcP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27188293</pqid></control><display><type>article</type><title>Long-term relative stability of thermistors: Part 2</title><source>Elsevier ScienceDirect Journals</source><creator>Lawton, K.M. ; Patterson, S.R.</creator><creatorcontrib>Lawton, K.M. ; Patterson, S.R.</creatorcontrib><description>The relative stability of four glass–bead thermistors has been analyzed for 66 months to determine if thermistors have sufficient relative stability to be used as feedback sensors for milliKelvin levels of temperature control. This paper provides additional drift data and new correlations beyond those described in a previous paper [Prec Eng, J Int Soc Prec Eng Nanotechnol 2001;25:24–8]. The thermistors were measured at 20±0.1
°C using commercial two-wire instrumentation. The thermistors have a nominal resistance of 12.5
kΩ and sensitivity of −4.5%/°C at 20
°C. They are nested together inside several layers of thermal resistance and capacitance which are held at nominal 20
°C with a heater controller that maintains the thermistor nest above the 19
°C ambient air temperature. After correction for instrumentation drift with two high-stability reference resistors, the average relative RMS drift of the thermistors is 48±16
μK, with an RMS fitted drift rate of 0.19±0.08
μK per week.</description><identifier>ISSN: 0141-6359</identifier><identifier>EISSN: 1873-2372</identifier><identifier>DOI: 10.1016/S0141-6359(02)00110-1</identifier><identifier>CODEN: PREGDL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Capacitance ; Exact sciences and technology ; Feedback control ; Heat resistance ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Physics ; Sensitivity analysis ; Sensors ; Stability ; Stability criteria ; Temperature control ; Thermal instruments, apparatus and techniques ; Thermistors</subject><ispartof>Precision engineering, 2002-07, Vol.26 (3), p.340-345</ispartof><rights>2002 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-94fac83ca43c2b222739be08ff8a2b22c6f959af9a9b4e64815e63ae6e9043b63</citedby><cites>FETCH-LOGICAL-c400t-94fac83ca43c2b222739be08ff8a2b22c6f959af9a9b4e64815e63ae6e9043b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0141-6359(02)00110-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13799855$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawton, K.M.</creatorcontrib><creatorcontrib>Patterson, S.R.</creatorcontrib><title>Long-term relative stability of thermistors: Part 2</title><title>Precision engineering</title><description>The relative stability of four glass–bead thermistors has been analyzed for 66 months to determine if thermistors have sufficient relative stability to be used as feedback sensors for milliKelvin levels of temperature control. This paper provides additional drift data and new correlations beyond those described in a previous paper [Prec Eng, J Int Soc Prec Eng Nanotechnol 2001;25:24–8]. The thermistors were measured at 20±0.1
°C using commercial two-wire instrumentation. The thermistors have a nominal resistance of 12.5
kΩ and sensitivity of −4.5%/°C at 20
°C. They are nested together inside several layers of thermal resistance and capacitance which are held at nominal 20
°C with a heater controller that maintains the thermistor nest above the 19
°C ambient air temperature. After correction for instrumentation drift with two high-stability reference resistors, the average relative RMS drift of the thermistors is 48±16
μK, with an RMS fitted drift rate of 0.19±0.08
μK per week.</description><subject>Capacitance</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Heat resistance</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Temperature control</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermistors</subject><issn>0141-6359</issn><issn>1873-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKEXX4fq5NE28SKy-IIFBfUc0uxEI91Wk-zCfnu7D_Smp2GY339m-BFySOGcAi0vnoEKmpe8UKfAzgAohZxukQGVFc8Zr9g2Gfwgu2Qvxg8AqCSIAeHjrn3LE4ZpFrAxyc8xi8nUvvFpkXUuS-_9zMfUhXiZPZmQMrZPdpxpIh5s6pC83t68jO7z8ePdw-h6nFsBkHIlnLGSWyO4ZTVjrOKqRpDOSbPsbelUoYxTRtUCSyFpgSU3WKICweuSD8nJeu9n6L5mGJPuH7HYNKbFbhZ1JUTFqCplTx7_SbKKSskU78FiDdrQxRjQ6c_gpyYsNAW9lKlXMvXSlAamVzI17XNHmwMmWtO4YFrr42-YV0rJoui5qzWHvZe5x6Cj9dhanPiANulJ5_-59A19UIcP</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Lawton, K.M.</creator><creator>Patterson, S.R.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>20020701</creationdate><title>Long-term relative stability of thermistors: Part 2</title><author>Lawton, K.M. ; Patterson, S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-94fac83ca43c2b222739be08ff8a2b22c6f959af9a9b4e64815e63ae6e9043b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Capacitance</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Heat resistance</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Temperature control</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawton, K.M.</creatorcontrib><creatorcontrib>Patterson, S.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Precision engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawton, K.M.</au><au>Patterson, S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term relative stability of thermistors: Part 2</atitle><jtitle>Precision engineering</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>26</volume><issue>3</issue><spage>340</spage><epage>345</epage><pages>340-345</pages><issn>0141-6359</issn><eissn>1873-2372</eissn><coden>PREGDL</coden><abstract>The relative stability of four glass–bead thermistors has been analyzed for 66 months to determine if thermistors have sufficient relative stability to be used as feedback sensors for milliKelvin levels of temperature control. This paper provides additional drift data and new correlations beyond those described in a previous paper [Prec Eng, J Int Soc Prec Eng Nanotechnol 2001;25:24–8]. The thermistors were measured at 20±0.1
°C using commercial two-wire instrumentation. The thermistors have a nominal resistance of 12.5
kΩ and sensitivity of −4.5%/°C at 20
°C. They are nested together inside several layers of thermal resistance and capacitance which are held at nominal 20
°C with a heater controller that maintains the thermistor nest above the 19
°C ambient air temperature. After correction for instrumentation drift with two high-stability reference resistors, the average relative RMS drift of the thermistors is 48±16
μK, with an RMS fitted drift rate of 0.19±0.08
μK per week.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0141-6359(02)00110-1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-6359 |
ispartof | Precision engineering, 2002-07, Vol.26 (3), p.340-345 |
issn | 0141-6359 1873-2372 |
language | eng |
recordid | cdi_proquest_miscellaneous_744721968 |
source | Elsevier ScienceDirect Journals |
subjects | Capacitance Exact sciences and technology Feedback control Heat resistance Instruments, apparatus, components and techniques common to several branches of physics and astronomy Physics Sensitivity analysis Sensors Stability Stability criteria Temperature control Thermal instruments, apparatus and techniques Thermistors |
title | Long-term relative stability of thermistors: Part 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20relative%20stability%20of%20thermistors:%20Part%202&rft.jtitle=Precision%20engineering&rft.au=Lawton,%20K.M.&rft.date=2002-07-01&rft.volume=26&rft.issue=3&rft.spage=340&rft.epage=345&rft.pages=340-345&rft.issn=0141-6359&rft.eissn=1873-2372&rft.coden=PREGDL&rft_id=info:doi/10.1016/S0141-6359(02)00110-1&rft_dat=%3Cproquest_cross%3E744721968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27188293&rft_id=info:pmid/&rft_els_id=S0141635902001101&rfr_iscdi=true |