Plastic spin and evolution of an anisotropic yield condition

Isotropic and anisotropic hardening will be combined with plastic spin in order to describe the microstructural behaviour of a polycrystalline metal in terms of continuum mechanics. In the present paper emphasis is given to the experimental procedure, based on previous work by Boehler and Koss and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 2001-09, Vol.43 (9), p.1969-1983
Hauptverfasser: Truong Qui, H.P., Lippmann, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1983
container_issue 9
container_start_page 1969
container_title International journal of mechanical sciences
container_volume 43
creator Truong Qui, H.P.
Lippmann, H.
description Isotropic and anisotropic hardening will be combined with plastic spin in order to describe the microstructural behaviour of a polycrystalline metal in terms of continuum mechanics. In the present paper emphasis is given to the experimental procedure, based on previous work by Boehler and Koss and applied in order to verify that approach. Experimental results for aluminium sheets at small strain i.e., in the regime of elastic–plastic transition are described and compared with theoretical predictions. The agreement is fair to good although it will be seen that the generalised, linear Prager hardening rule does not fit the experimental data. In particular it is found that the plastic spin, understood as the difference between the classical local rotation, induced by the displacement field, and the local rotation of the granular lattice may differ considerably from zero.
doi_str_mv 10.1016/S0020-7403(01)00023-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744712226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740301000236</els_id><sourcerecordid>744712226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-17de232afaf18f0258c250a9b3ed09931fffbdabcf8f5b82c29541af0d33f3793</originalsourceid><addsrcrecordid>eNqFkG1LwzAQx4MoOKcfQegLQX1RvSRtk4IgY_gEAwX1dUjzAJEuqUk32Le33Yb4Tjg47vjd_e_-CJ1juMGAq9t3AAI5K4BeAb6GoaJ5dYAmmLM6J7gih2jyixyjk5S-ADCDkk7Q3VsrU-9UljrnM-l1ZtahXfUu-CzYoTGES6GPoRugjTOtzlTw2o3EKTqysk3mbJ-n6PPx4WP-nC9en17ms0WuaMX7HDNtCCXSSou5BVJyRUqQdUONhrqm2FrbaNkoy23ZcKJIXRZYWtCUWspqOkWXu71dDN8rk3qxdEmZtpXehFUSrCgYJoRUA1nuSBVDStFY0UW3lHEjMIjRLLE1S4xOCMBia5YY5y72CjIp2doovXLpzzAHXo2H3O8wM3y7diaKpJzxymgXjeqFDu4foR_lg32s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744712226</pqid></control><display><type>article</type><title>Plastic spin and evolution of an anisotropic yield condition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Truong Qui, H.P. ; Lippmann, H.</creator><creatorcontrib>Truong Qui, H.P. ; Lippmann, H.</creatorcontrib><description>Isotropic and anisotropic hardening will be combined with plastic spin in order to describe the microstructural behaviour of a polycrystalline metal in terms of continuum mechanics. In the present paper emphasis is given to the experimental procedure, based on previous work by Boehler and Koss and applied in order to verify that approach. Experimental results for aluminium sheets at small strain i.e., in the regime of elastic–plastic transition are described and compared with theoretical predictions. The agreement is fair to good although it will be seen that the generalised, linear Prager hardening rule does not fit the experimental data. In particular it is found that the plastic spin, understood as the difference between the classical local rotation, induced by the displacement field, and the local rotation of the granular lattice may differ considerably from zero.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/S0020-7403(01)00023-6</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum sheet ; Anisotropy ; Applied sciences ; Continuum mechanics ; Elasticity. Plasticity ; Elastoplasticity ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Grain boundaries ; Grain rotation ; Hardening ; Inelasticity (thermoplasticity, viscoplasticity...) ; Isotropic hardening ; Kinematic hardening ; Kinematics ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Orthotropy ; Physics ; Plastic flow ; Plastic spin ; Polycrystal ; Solid mechanics ; Structural and continuum mechanics ; Texture ; Viscoelasticity, plasticity, viscoplasticity ; Yield condition</subject><ispartof>International journal of mechanical sciences, 2001-09, Vol.43 (9), p.1969-1983</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-17de232afaf18f0258c250a9b3ed09931fffbdabcf8f5b82c29541af0d33f3793</citedby><cites>FETCH-LOGICAL-c368t-17de232afaf18f0258c250a9b3ed09931fffbdabcf8f5b82c29541af0d33f3793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7403(01)00023-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1080869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong Qui, H.P.</creatorcontrib><creatorcontrib>Lippmann, H.</creatorcontrib><title>Plastic spin and evolution of an anisotropic yield condition</title><title>International journal of mechanical sciences</title><description>Isotropic and anisotropic hardening will be combined with plastic spin in order to describe the microstructural behaviour of a polycrystalline metal in terms of continuum mechanics. In the present paper emphasis is given to the experimental procedure, based on previous work by Boehler and Koss and applied in order to verify that approach. Experimental results for aluminium sheets at small strain i.e., in the regime of elastic–plastic transition are described and compared with theoretical predictions. The agreement is fair to good although it will be seen that the generalised, linear Prager hardening rule does not fit the experimental data. In particular it is found that the plastic spin, understood as the difference between the classical local rotation, induced by the displacement field, and the local rotation of the granular lattice may differ considerably from zero.</description><subject>Aluminum sheet</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Continuum mechanics</subject><subject>Elasticity. Plasticity</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grain boundaries</subject><subject>Grain rotation</subject><subject>Hardening</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Isotropic hardening</subject><subject>Kinematic hardening</subject><subject>Kinematics</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Orthotropy</subject><subject>Physics</subject><subject>Plastic flow</subject><subject>Plastic spin</subject><subject>Polycrystal</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Texture</subject><subject>Viscoelasticity, plasticity, viscoplasticity</subject><subject>Yield condition</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkG1LwzAQx4MoOKcfQegLQX1RvSRtk4IgY_gEAwX1dUjzAJEuqUk32Le33Yb4Tjg47vjd_e_-CJ1juMGAq9t3AAI5K4BeAb6GoaJ5dYAmmLM6J7gih2jyixyjk5S-ADCDkk7Q3VsrU-9UljrnM-l1ZtahXfUu-CzYoTGES6GPoRugjTOtzlTw2o3EKTqysk3mbJ-n6PPx4WP-nC9en17ms0WuaMX7HDNtCCXSSou5BVJyRUqQdUONhrqm2FrbaNkoy23ZcKJIXRZYWtCUWspqOkWXu71dDN8rk3qxdEmZtpXehFUSrCgYJoRUA1nuSBVDStFY0UW3lHEjMIjRLLE1S4xOCMBia5YY5y72CjIp2doovXLpzzAHXo2H3O8wM3y7diaKpJzxymgXjeqFDu4foR_lg32s</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Truong Qui, H.P.</creator><creator>Lippmann, H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20010901</creationdate><title>Plastic spin and evolution of an anisotropic yield condition</title><author>Truong Qui, H.P. ; Lippmann, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-17de232afaf18f0258c250a9b3ed09931fffbdabcf8f5b82c29541af0d33f3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aluminum sheet</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Continuum mechanics</topic><topic>Elasticity. Plasticity</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grain boundaries</topic><topic>Grain rotation</topic><topic>Hardening</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Isotropic hardening</topic><topic>Kinematic hardening</topic><topic>Kinematics</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Orthotropy</topic><topic>Physics</topic><topic>Plastic flow</topic><topic>Plastic spin</topic><topic>Polycrystal</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Texture</topic><topic>Viscoelasticity, plasticity, viscoplasticity</topic><topic>Yield condition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong Qui, H.P.</creatorcontrib><creatorcontrib>Lippmann, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong Qui, H.P.</au><au>Lippmann, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic spin and evolution of an anisotropic yield condition</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2001-09-01</date><risdate>2001</risdate><volume>43</volume><issue>9</issue><spage>1969</spage><epage>1983</epage><pages>1969-1983</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>Isotropic and anisotropic hardening will be combined with plastic spin in order to describe the microstructural behaviour of a polycrystalline metal in terms of continuum mechanics. In the present paper emphasis is given to the experimental procedure, based on previous work by Boehler and Koss and applied in order to verify that approach. Experimental results for aluminium sheets at small strain i.e., in the regime of elastic–plastic transition are described and compared with theoretical predictions. The agreement is fair to good although it will be seen that the generalised, linear Prager hardening rule does not fit the experimental data. In particular it is found that the plastic spin, understood as the difference between the classical local rotation, induced by the displacement field, and the local rotation of the granular lattice may differ considerably from zero.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7403(01)00023-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2001-09, Vol.43 (9), p.1969-1983
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_744712226
source Elsevier ScienceDirect Journals Complete
subjects Aluminum sheet
Anisotropy
Applied sciences
Continuum mechanics
Elasticity. Plasticity
Elastoplasticity
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Grain boundaries
Grain rotation
Hardening
Inelasticity (thermoplasticity, viscoplasticity...)
Isotropic hardening
Kinematic hardening
Kinematics
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Orthotropy
Physics
Plastic flow
Plastic spin
Polycrystal
Solid mechanics
Structural and continuum mechanics
Texture
Viscoelasticity, plasticity, viscoplasticity
Yield condition
title Plastic spin and evolution of an anisotropic yield condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20spin%20and%20evolution%20of%20an%20anisotropic%20yield%20condition&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Truong%20Qui,%20H.P.&rft.date=2001-09-01&rft.volume=43&rft.issue=9&rft.spage=1969&rft.epage=1983&rft.pages=1969-1983&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/S0020-7403(01)00023-6&rft_dat=%3Cproquest_cross%3E744712226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744712226&rft_id=info:pmid/&rft_els_id=S0020740301000236&rfr_iscdi=true