An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2002-01, Vol.38 (2), p.125-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | International journal for numerical methods in fluids |
container_volume | 38 |
creator | Kim, Kyoungyoun Baek, Seung-Jin Sung, Hyung Jin |
description | An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744711145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744711145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoMoOI7iK-SiHqTXSieZpI_L6uwKwyiouLeQTlc0bqYzm3SvO29vZBb1onj6ofj4qoqfkKcMThhA-8rH4aQFeY8sGHSqAb7i98kCWsWaFjr2kDwq5RsAdK3mC3J5OtKw28fgwkRvMKaaBzqgS3Mdjl_oPieHw5yR-pTp9BVpGF3a7TOWEvqIdGtvAubmw5SusFC8nu0U0lgekwfexoJP7nJJPq3ffDy7aDbvzt-enW4aJ7SSjcKh1V7ITirGe88sWNnqXmsc-m7VgQTZWz34weJKMq4FF1J6BY67XkoLfEleHL310OsZy2R2oTiM0Y6Y5mKUEIoxJmQln_-TbJXsQHD-P6DWrP1jt8uplIze7HPY2XwwDMzPMkwtw9QyKvnsTmmLs9FnO7pQfuNc1Dbqf0vy8sh9DxEPf9OZ9eb10doc6VAmvP1F23xlVooraT5vzw17v2YgLjuz5T8AKximKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27588120</pqid></control><display><type>article</type><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><source>Access via Wiley Online Library</source><creator>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</creator><creatorcontrib>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</creatorcontrib><description>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.205</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>approximate factorization ; Approximation theory ; Boundary conditions ; Computational methods ; Computational methods in fluid dynamics ; Diffusion ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat convection ; implicit time advancement ; incompressible Navier-Stokes equations ; Physics ; Pressure effects ; second-order accuracy ; velocity componets decoupling ; velocity-pressure decoupling</subject><ispartof>International journal for numerical methods in fluids, 2002-01, Vol.38 (2), p.125-138</ispartof><rights>Copyright © 2001 John Wiley & Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</citedby><cites>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13428351$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyoungyoun</creatorcontrib><creatorcontrib>Baek, Seung-Jin</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd.</description><subject>approximate factorization</subject><subject>Approximation theory</subject><subject>Boundary conditions</subject><subject>Computational methods</subject><subject>Computational methods in fluid dynamics</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>implicit time advancement</subject><subject>incompressible Navier-Stokes equations</subject><subject>Physics</subject><subject>Pressure effects</subject><subject>second-order accuracy</subject><subject>velocity componets decoupling</subject><subject>velocity-pressure decoupling</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkcGKFDEQhoMoOI7iK-SiHqTXSieZpI_L6uwKwyiouLeQTlc0bqYzm3SvO29vZBb1onj6ofj4qoqfkKcMThhA-8rH4aQFeY8sGHSqAb7i98kCWsWaFjr2kDwq5RsAdK3mC3J5OtKw28fgwkRvMKaaBzqgS3Mdjl_oPieHw5yR-pTp9BVpGF3a7TOWEvqIdGtvAubmw5SusFC8nu0U0lgekwfexoJP7nJJPq3ffDy7aDbvzt-enW4aJ7SSjcKh1V7ITirGe88sWNnqXmsc-m7VgQTZWz34weJKMq4FF1J6BY67XkoLfEleHL310OsZy2R2oTiM0Y6Y5mKUEIoxJmQln_-TbJXsQHD-P6DWrP1jt8uplIze7HPY2XwwDMzPMkwtw9QyKvnsTmmLs9FnO7pQfuNc1Dbqf0vy8sh9DxEPf9OZ9eb10doc6VAmvP1F23xlVooraT5vzw17v2YgLjuz5T8AKximKg</recordid><startdate>20020120</startdate><enddate>20020120</enddate><creator>Kim, Kyoungyoun</creator><creator>Baek, Seung-Jin</creator><creator>Sung, Hyung Jin</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20020120</creationdate><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><author>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>approximate factorization</topic><topic>Approximation theory</topic><topic>Boundary conditions</topic><topic>Computational methods</topic><topic>Computational methods in fluid dynamics</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>implicit time advancement</topic><topic>incompressible Navier-Stokes equations</topic><topic>Physics</topic><topic>Pressure effects</topic><topic>second-order accuracy</topic><topic>velocity componets decoupling</topic><topic>velocity-pressure decoupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyoungyoun</creatorcontrib><creatorcontrib>Baek, Seung-Jin</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyoungyoun</au><au>Baek, Seung-Jin</au><au>Sung, Hyung Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2002-01-20</date><risdate>2002</risdate><volume>38</volume><issue>2</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.205</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2002-01, Vol.38 (2), p.125-138 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_744711145 |
source | Access via Wiley Online Library |
subjects | approximate factorization Approximation theory Boundary conditions Computational methods Computational methods in fluid dynamics Diffusion Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Heat convection implicit time advancement incompressible Navier-Stokes equations Physics Pressure effects second-order accuracy velocity componets decoupling velocity-pressure decoupling |
title | An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implicit%20velocity%20decoupling%20procedure%20for%20the%20incompressible%20Navier-Stokes%20equations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kim,%20Kyoungyoun&rft.date=2002-01-20&rft.volume=38&rft.issue=2&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.205&rft_dat=%3Cproquest_cross%3E744711145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27588120&rft_id=info:pmid/&rfr_iscdi=true |