An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations

An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2002-01, Vol.38 (2), p.125-138
Hauptverfasser: Kim, Kyoungyoun, Baek, Seung-Jin, Sung, Hyung Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 2
container_start_page 125
container_title International journal for numerical methods in fluids
container_volume 38
creator Kim, Kyoungyoun
Baek, Seung-Jin
Sung, Hyung Jin
description An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744711145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744711145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoMoOI7iK-SiHqTXSieZpI_L6uwKwyiouLeQTlc0bqYzm3SvO29vZBb1onj6ofj4qoqfkKcMThhA-8rH4aQFeY8sGHSqAb7i98kCWsWaFjr2kDwq5RsAdK3mC3J5OtKw28fgwkRvMKaaBzqgS3Mdjl_oPieHw5yR-pTp9BVpGF3a7TOWEvqIdGtvAubmw5SusFC8nu0U0lgekwfexoJP7nJJPq3ffDy7aDbvzt-enW4aJ7SSjcKh1V7ITirGe88sWNnqXmsc-m7VgQTZWz34weJKMq4FF1J6BY67XkoLfEleHL310OsZy2R2oTiM0Y6Y5mKUEIoxJmQln_-TbJXsQHD-P6DWrP1jt8uplIze7HPY2XwwDMzPMkwtw9QyKvnsTmmLs9FnO7pQfuNc1Dbqf0vy8sh9DxEPf9OZ9eb10doc6VAmvP1F23xlVooraT5vzw17v2YgLjuz5T8AKximKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27588120</pqid></control><display><type>article</type><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><source>Access via Wiley Online Library</source><creator>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</creator><creatorcontrib>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</creatorcontrib><description>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.205</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>approximate factorization ; Approximation theory ; Boundary conditions ; Computational methods ; Computational methods in fluid dynamics ; Diffusion ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat convection ; implicit time advancement ; incompressible Navier-Stokes equations ; Physics ; Pressure effects ; second-order accuracy ; velocity componets decoupling ; velocity-pressure decoupling</subject><ispartof>International journal for numerical methods in fluids, 2002-01, Vol.38 (2), p.125-138</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</citedby><cites>FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13428351$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyoungyoun</creatorcontrib><creatorcontrib>Baek, Seung-Jin</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>approximate factorization</subject><subject>Approximation theory</subject><subject>Boundary conditions</subject><subject>Computational methods</subject><subject>Computational methods in fluid dynamics</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>implicit time advancement</subject><subject>incompressible Navier-Stokes equations</subject><subject>Physics</subject><subject>Pressure effects</subject><subject>second-order accuracy</subject><subject>velocity componets decoupling</subject><subject>velocity-pressure decoupling</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkcGKFDEQhoMoOI7iK-SiHqTXSieZpI_L6uwKwyiouLeQTlc0bqYzm3SvO29vZBb1onj6ofj4qoqfkKcMThhA-8rH4aQFeY8sGHSqAb7i98kCWsWaFjr2kDwq5RsAdK3mC3J5OtKw28fgwkRvMKaaBzqgS3Mdjl_oPieHw5yR-pTp9BVpGF3a7TOWEvqIdGtvAubmw5SusFC8nu0U0lgekwfexoJP7nJJPq3ffDy7aDbvzt-enW4aJ7SSjcKh1V7ITirGe88sWNnqXmsc-m7VgQTZWz34weJKMq4FF1J6BY67XkoLfEleHL310OsZy2R2oTiM0Y6Y5mKUEIoxJmQln_-TbJXsQHD-P6DWrP1jt8uplIze7HPY2XwwDMzPMkwtw9QyKvnsTmmLs9FnO7pQfuNc1Dbqf0vy8sh9DxEPf9OZ9eb10doc6VAmvP1F23xlVooraT5vzw17v2YgLjuz5T8AKximKg</recordid><startdate>20020120</startdate><enddate>20020120</enddate><creator>Kim, Kyoungyoun</creator><creator>Baek, Seung-Jin</creator><creator>Sung, Hyung Jin</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20020120</creationdate><title>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</title><author>Kim, Kyoungyoun ; Baek, Seung-Jin ; Sung, Hyung Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-7ed28f4595713bf1a0a528b88edb9690505ba8dfdae6513843455f70c3cb55a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>approximate factorization</topic><topic>Approximation theory</topic><topic>Boundary conditions</topic><topic>Computational methods</topic><topic>Computational methods in fluid dynamics</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>implicit time advancement</topic><topic>incompressible Navier-Stokes equations</topic><topic>Physics</topic><topic>Pressure effects</topic><topic>second-order accuracy</topic><topic>velocity componets decoupling</topic><topic>velocity-pressure decoupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyoungyoun</creatorcontrib><creatorcontrib>Baek, Seung-Jin</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyoungyoun</au><au>Baek, Seung-Jin</au><au>Sung, Hyung Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2002-01-20</date><risdate>2002</risdate><volume>38</volume><issue>2</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>An efficient numerical method to solve the unsteady incompressible Navier–Stokes equations is developed. A fully implicit time advancement is employed to avoid the Courant–Friedrichs–Lewy restriction, where the Crank–Nicolson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity–pressure decoupling is achieved in conjunction with the approximate factorization. The main emphasis is placed on the additional decoupling of the intermediate velocity components with only nth time step velocity. The temporal second‐order accuracy is preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving several test cases, in particular, the turbulent minimal channel flow unit. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.205</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2002-01, Vol.38 (2), p.125-138
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_744711145
source Access via Wiley Online Library
subjects approximate factorization
Approximation theory
Boundary conditions
Computational methods
Computational methods in fluid dynamics
Diffusion
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat convection
implicit time advancement
incompressible Navier-Stokes equations
Physics
Pressure effects
second-order accuracy
velocity componets decoupling
velocity-pressure decoupling
title An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implicit%20velocity%20decoupling%20procedure%20for%20the%20incompressible%20Navier-Stokes%20equations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kim,%20Kyoungyoun&rft.date=2002-01-20&rft.volume=38&rft.issue=2&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.205&rft_dat=%3Cproquest_cross%3E744711145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27588120&rft_id=info:pmid/&rfr_iscdi=true