A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility

To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuropathology and experimental neurology 2009-12, Vol.68 (12), p.1256-1268
Hauptverfasser: Squecco, Roberta, Carraro, Ugo, Kern, Helmut, Pond, Amber, Adami, Nicoletta, Biral, Donatella, Vindigni, Vincenzo, Boncompagni, Simona, Pietrangelo, Tiziana, Bosco, Gerardo, Fanò, Giorgio, Marini, Marina, Abruzzo, Provvidenza M, Germinario, Elena, Danieli-Betto, Daniela, Protasi, Feliciano, Francini, Fabio, Zampieri, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1268
container_issue 12
container_start_page 1256
container_title Journal of neuropathology and experimental neurology
container_volume 68
creator Squecco, Roberta
Carraro, Ugo
Kern, Helmut
Pond, Amber
Adami, Nicoletta
Biral, Donatella
Vindigni, Vincenzo
Boncompagni, Simona
Pietrangelo, Tiziana
Bosco, Gerardo
Fanò, Giorgio
Marini, Marina
Abruzzo, Provvidenza M
Germinario, Elena
Danieli-Betto, Daniela
Protasi, Feliciano
Francini, Fabio
Zampieri, Sandra
description To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties andelectrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lostnerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in responseto rehabilitation strategies developed based on empirical clinical observations.
doi_str_mv 10.1097/NEN.0b013e3181c18416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744708055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925778631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5416-475e3642d686836cc54410c711415db7d52ed1eefc8a2002e0e5b56232dc83d03</originalsourceid><addsrcrecordid>eNqFktFuFCEUhonR2G31DYwhJsarqcDADHO52W7VZLcmVq8nDHOmS2VhCoy1j9M3le1uatILvSAknO__D4cfhN5QckpJU3-8WF6cko7QEkoqqaaS0-oZmlEheFGJWj5HM0IYK0pSNUfoOMZrQkhDGv4SHdGmoYLLZobu5_hy6kY_TlYl4x32A_6mEl5PUVvA56aDEPFaGZfyilg5PI8RYlRdLi9_a5MedMXCuxSUfvBY-Gm0xl3hNeiNciZu8XxIEPDKu6viMinX76pn4CD82rc9gziaBJmICT96WZPuXqEXg7IRXh_2E_TjfPl98blYff30ZTFfFVrkyQteCygrzvpKVrKsdD7llOiaUk5F39W9YNBTgEFLxfLDAAHRiYqVrNey7El5gj7sfcfgbyaIqd2aqMFa5cBPsa05r4kkQvyfLHNLIemOfPeEvPZTcHmMlrGmJpUgZYb4HtLBxxhgaMdgtirctZS0u6jbHHX7NOose3vwnrot9H9Fh2wz8P4AqKiVHYJy2sRHjjGWvwOVmZN77tbbHFL8aadbCO0GlE2bf9_hD-HFxSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229706503</pqid></control><display><type>article</type><title>A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Journals@Ovid Complete</source><creator>Squecco, Roberta ; Carraro, Ugo ; Kern, Helmut ; Pond, Amber ; Adami, Nicoletta ; Biral, Donatella ; Vindigni, Vincenzo ; Boncompagni, Simona ; Pietrangelo, Tiziana ; Bosco, Gerardo ; Fanò, Giorgio ; Marini, Marina ; Abruzzo, Provvidenza M ; Germinario, Elena ; Danieli-Betto, Daniela ; Protasi, Feliciano ; Francini, Fabio ; Zampieri, Sandra</creator><creatorcontrib>Squecco, Roberta ; Carraro, Ugo ; Kern, Helmut ; Pond, Amber ; Adami, Nicoletta ; Biral, Donatella ; Vindigni, Vincenzo ; Boncompagni, Simona ; Pietrangelo, Tiziana ; Bosco, Gerardo ; Fanò, Giorgio ; Marini, Marina ; Abruzzo, Provvidenza M ; Germinario, Elena ; Danieli-Betto, Daniela ; Protasi, Feliciano ; Francini, Fabio ; Zampieri, Sandra</creatorcontrib><description>To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties andelectrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lostnerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in responseto rehabilitation strategies developed based on empirical clinical observations.</description><identifier>ISSN: 0022-3069</identifier><identifier>EISSN: 1554-6578</identifier><identifier>DOI: 10.1097/NEN.0b013e3181c18416</identifier><identifier>PMID: 19915489</identifier><identifier>CODEN: JNENAD</identifier><language>eng</language><publisher>Hagerstown, MD: American Association of Neuropathologists, Inc</publisher><subject>Animals ; Biological and medical sciences ; Calcium Channels - physiology ; Gene Expression ; Male ; Medical sciences ; Membrane Potentials - physiology ; Microscopy, Electron, Transmission ; Muscle Contraction - physiology ; Muscle Denervation - adverse effects ; Muscle Proteins - biosynthesis ; Muscle Proteins - genetics ; Muscle, Skeletal - physiology ; Muscular Atrophy - physiopathology ; Neurology ; Patch-Clamp Techniques ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction</subject><ispartof>Journal of neuropathology and experimental neurology, 2009-12, Vol.68 (12), p.1256-1268</ispartof><rights>2009 American Association of Neuropathologists, Inc</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Lippincott Williams &amp; Wilkins Dec 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5416-475e3642d686836cc54410c711415db7d52ed1eefc8a2002e0e5b56232dc83d03</citedby><cites>FETCH-LOGICAL-c5416-475e3642d686836cc54410c711415db7d52ed1eefc8a2002e0e5b56232dc83d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22209018$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19915489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Squecco, Roberta</creatorcontrib><creatorcontrib>Carraro, Ugo</creatorcontrib><creatorcontrib>Kern, Helmut</creatorcontrib><creatorcontrib>Pond, Amber</creatorcontrib><creatorcontrib>Adami, Nicoletta</creatorcontrib><creatorcontrib>Biral, Donatella</creatorcontrib><creatorcontrib>Vindigni, Vincenzo</creatorcontrib><creatorcontrib>Boncompagni, Simona</creatorcontrib><creatorcontrib>Pietrangelo, Tiziana</creatorcontrib><creatorcontrib>Bosco, Gerardo</creatorcontrib><creatorcontrib>Fanò, Giorgio</creatorcontrib><creatorcontrib>Marini, Marina</creatorcontrib><creatorcontrib>Abruzzo, Provvidenza M</creatorcontrib><creatorcontrib>Germinario, Elena</creatorcontrib><creatorcontrib>Danieli-Betto, Daniela</creatorcontrib><creatorcontrib>Protasi, Feliciano</creatorcontrib><creatorcontrib>Francini, Fabio</creatorcontrib><creatorcontrib>Zampieri, Sandra</creatorcontrib><title>A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility</title><title>Journal of neuropathology and experimental neurology</title><addtitle>J Neuropathol Exp Neurol</addtitle><description>To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties andelectrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lostnerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in responseto rehabilitation strategies developed based on empirical clinical observations.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium Channels - physiology</subject><subject>Gene Expression</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Potentials - physiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Denervation - adverse effects</subject><subject>Muscle Proteins - biosynthesis</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular Atrophy - physiopathology</subject><subject>Neurology</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><issn>0022-3069</issn><issn>1554-6578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFktFuFCEUhonR2G31DYwhJsarqcDADHO52W7VZLcmVq8nDHOmS2VhCoy1j9M3le1uatILvSAknO__D4cfhN5QckpJU3-8WF6cko7QEkoqqaaS0-oZmlEheFGJWj5HM0IYK0pSNUfoOMZrQkhDGv4SHdGmoYLLZobu5_hy6kY_TlYl4x32A_6mEl5PUVvA56aDEPFaGZfyilg5PI8RYlRdLi9_a5MedMXCuxSUfvBY-Gm0xl3hNeiNciZu8XxIEPDKu6viMinX76pn4CD82rc9gziaBJmICT96WZPuXqEXg7IRXh_2E_TjfPl98blYff30ZTFfFVrkyQteCygrzvpKVrKsdD7llOiaUk5F39W9YNBTgEFLxfLDAAHRiYqVrNey7El5gj7sfcfgbyaIqd2aqMFa5cBPsa05r4kkQvyfLHNLIemOfPeEvPZTcHmMlrGmJpUgZYb4HtLBxxhgaMdgtirctZS0u6jbHHX7NOose3vwnrot9H9Fh2wz8P4AqKiVHYJy2sRHjjGWvwOVmZN77tbbHFL8aadbCO0GlE2bf9_hD-HFxSY</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Squecco, Roberta</creator><creator>Carraro, Ugo</creator><creator>Kern, Helmut</creator><creator>Pond, Amber</creator><creator>Adami, Nicoletta</creator><creator>Biral, Donatella</creator><creator>Vindigni, Vincenzo</creator><creator>Boncompagni, Simona</creator><creator>Pietrangelo, Tiziana</creator><creator>Bosco, Gerardo</creator><creator>Fanò, Giorgio</creator><creator>Marini, Marina</creator><creator>Abruzzo, Provvidenza M</creator><creator>Germinario, Elena</creator><creator>Danieli-Betto, Daniela</creator><creator>Protasi, Feliciano</creator><creator>Francini, Fabio</creator><creator>Zampieri, Sandra</creator><general>American Association of Neuropathologists, Inc</general><general>Lippincott Williams &amp; Wilkins</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope></search><sort><creationdate>200912</creationdate><title>A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility</title><author>Squecco, Roberta ; Carraro, Ugo ; Kern, Helmut ; Pond, Amber ; Adami, Nicoletta ; Biral, Donatella ; Vindigni, Vincenzo ; Boncompagni, Simona ; Pietrangelo, Tiziana ; Bosco, Gerardo ; Fanò, Giorgio ; Marini, Marina ; Abruzzo, Provvidenza M ; Germinario, Elena ; Danieli-Betto, Daniela ; Protasi, Feliciano ; Francini, Fabio ; Zampieri, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5416-475e3642d686836cc54410c711415db7d52ed1eefc8a2002e0e5b56232dc83d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium Channels - physiology</topic><topic>Gene Expression</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Potentials - physiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Denervation - adverse effects</topic><topic>Muscle Proteins - biosynthesis</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular Atrophy - physiopathology</topic><topic>Neurology</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Squecco, Roberta</creatorcontrib><creatorcontrib>Carraro, Ugo</creatorcontrib><creatorcontrib>Kern, Helmut</creatorcontrib><creatorcontrib>Pond, Amber</creatorcontrib><creatorcontrib>Adami, Nicoletta</creatorcontrib><creatorcontrib>Biral, Donatella</creatorcontrib><creatorcontrib>Vindigni, Vincenzo</creatorcontrib><creatorcontrib>Boncompagni, Simona</creatorcontrib><creatorcontrib>Pietrangelo, Tiziana</creatorcontrib><creatorcontrib>Bosco, Gerardo</creatorcontrib><creatorcontrib>Fanò, Giorgio</creatorcontrib><creatorcontrib>Marini, Marina</creatorcontrib><creatorcontrib>Abruzzo, Provvidenza M</creatorcontrib><creatorcontrib>Germinario, Elena</creatorcontrib><creatorcontrib>Danieli-Betto, Daniela</creatorcontrib><creatorcontrib>Protasi, Feliciano</creatorcontrib><creatorcontrib>Francini, Fabio</creatorcontrib><creatorcontrib>Zampieri, Sandra</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neuropathology and experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Squecco, Roberta</au><au>Carraro, Ugo</au><au>Kern, Helmut</au><au>Pond, Amber</au><au>Adami, Nicoletta</au><au>Biral, Donatella</au><au>Vindigni, Vincenzo</au><au>Boncompagni, Simona</au><au>Pietrangelo, Tiziana</au><au>Bosco, Gerardo</au><au>Fanò, Giorgio</au><au>Marini, Marina</au><au>Abruzzo, Provvidenza M</au><au>Germinario, Elena</au><au>Danieli-Betto, Daniela</au><au>Protasi, Feliciano</au><au>Francini, Fabio</au><au>Zampieri, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility</atitle><jtitle>Journal of neuropathology and experimental neurology</jtitle><addtitle>J Neuropathol Exp Neurol</addtitle><date>2009-12</date><risdate>2009</risdate><volume>68</volume><issue>12</issue><spage>1256</spage><epage>1268</epage><pages>1256-1268</pages><issn>0022-3069</issn><eissn>1554-6578</eissn><coden>JNENAD</coden><abstract>To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties andelectrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lostnerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in responseto rehabilitation strategies developed based on empirical clinical observations.</abstract><cop>Hagerstown, MD</cop><pub>American Association of Neuropathologists, Inc</pub><pmid>19915489</pmid><doi>10.1097/NEN.0b013e3181c18416</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3069
ispartof Journal of neuropathology and experimental neurology, 2009-12, Vol.68 (12), p.1256-1268
issn 0022-3069
1554-6578
language eng
recordid cdi_proquest_miscellaneous_744708055
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Journals@Ovid Complete
subjects Animals
Biological and medical sciences
Calcium Channels - physiology
Gene Expression
Male
Medical sciences
Membrane Potentials - physiology
Microscopy, Electron, Transmission
Muscle Contraction - physiology
Muscle Denervation - adverse effects
Muscle Proteins - biosynthesis
Muscle Proteins - genetics
Muscle, Skeletal - physiology
Muscular Atrophy - physiopathology
Neurology
Patch-Clamp Techniques
Rats
Rats, Wistar
Reverse Transcriptase Polymerase Chain Reaction
title A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Subpopulation%20of%20Rat%20Muscle%20Fibers%20Maintains%20an%20Assessable%20Excitation-Contraction%20Coupling%20Mechanism%20After%20Long-Standing%20Denervation%20Despite%20Lost%20Contractility&rft.jtitle=Journal%20of%20neuropathology%20and%20experimental%20neurology&rft.au=Squecco,%20Roberta&rft.date=2009-12&rft.volume=68&rft.issue=12&rft.spage=1256&rft.epage=1268&rft.pages=1256-1268&rft.issn=0022-3069&rft.eissn=1554-6578&rft.coden=JNENAD&rft_id=info:doi/10.1097/NEN.0b013e3181c18416&rft_dat=%3Cproquest_cross%3E1925778631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229706503&rft_id=info:pmid/19915489&rfr_iscdi=true