Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications

Abstract The present paper discusses the basic principles of hydraulic turbines, with special emphasis on the use of computational fluid dynamics (CFD) as a tool which is being increasingly applied to gain insight into the complex three-dimensional (3D) phenomena occurring in these types of fluid ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 1999-01, Vol.213 (1), p.85-102
Hauptverfasser: Drtina, P, Sallaberger, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 85
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 213
creator Drtina, P
Sallaberger, M
description Abstract The present paper discusses the basic principles of hydraulic turbines, with special emphasis on the use of computational fluid dynamics (CFD) as a tool which is being increasingly applied to gain insight into the complex three-dimensional (3D) phenomena occurring in these types of fluid machinery. The basic fluid mechanics is briefly treated for the three main types of hydraulic turbine: Pelton, Francis and axial turbines. From the vast number of applications where CFD has proven to be an important help to the design engineer, two examples have been chosen for a detailed discussion. The first example gives a comparison of experimental data and 3D Euler and 3D Navier-Stokes results for the flow in a Francis runner. The second example highlights the state-of-the-art of predicting the performance of an entire Francis turbine by means of numerical simulation.
doi_str_mv 10.1243/0954406991522202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744706616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_0954406991522202</sage_id><sourcerecordid>26968925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-13035a5e2fc48fa145a4d04034c239a22245539765e8d81a36184eb0e9f76ea83</originalsourceid><addsrcrecordid>eNp9kT1LA0EQhhdRMEZ7y8NCq9X9zm0pQY0g2Gh9TPbmdMN9uXtXpPNH-Av9JW6MIAR0moF5n_eFmSHklLNLLpS8YlYrxYy1XAshmNgjE8EUp8Lmcp9MNjJNujgkRzGuWCph9ISUi3UZYKy9y4YxLH2L8fP9YwkxDfrgW-f7GmMGbZnFAQakXUWHV6QQhsx1TT-moe9aqLOqHn2ZlesWGu-So-9T6LcYj8lBBXXEk58-Jc-3N0_zBX14vLufXz9QJ40dKJdMatAoKqfyCrjSoEqmmFROSAtpLaW1tDOjMS9zDtLwXOGSoa1mBiGXU3Kxze1D9zZiHIrGR4d1DS12YyxmSs2YMdwk8vxfUhhrcit0As92wFU3hrRvYqSyXEnBE8S2kAtdjAGrIp2ugbAuOCs23yl2v5MsdGuJ8IK_mX_yX1Gnj4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234914321</pqid></control><display><type>article</type><title>Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications</title><source>SAGE Complete</source><creator>Drtina, P ; Sallaberger, M</creator><creatorcontrib>Drtina, P ; Sallaberger, M</creatorcontrib><description>Abstract The present paper discusses the basic principles of hydraulic turbines, with special emphasis on the use of computational fluid dynamics (CFD) as a tool which is being increasingly applied to gain insight into the complex three-dimensional (3D) phenomena occurring in these types of fluid machinery. The basic fluid mechanics is briefly treated for the three main types of hydraulic turbine: Pelton, Francis and axial turbines. From the vast number of applications where CFD has proven to be an important help to the design engineer, two examples have been chosen for a detailed discussion. The first example gives a comparison of experimental data and 3D Euler and 3D Navier-Stokes results for the flow in a Francis runner. The second example highlights the state-of-the-art of predicting the performance of an entire Francis turbine by means of numerical simulation.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1243/0954406991522202</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computational fluid dynamics ; Machine design ; Mathematical models ; Navier Stokes equations</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 1999-01, Vol.213 (1), p.85-102</ispartof><rights>1999 Institution of Mechanical Engineers</rights><rights>Copyright Mechanical Engineering Publications, Ltd. 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-13035a5e2fc48fa145a4d04034c239a22245539765e8d81a36184eb0e9f76ea83</citedby><cites>FETCH-LOGICAL-c369t-13035a5e2fc48fa145a4d04034c239a22245539765e8d81a36184eb0e9f76ea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/0954406991522202$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/0954406991522202$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Drtina, P</creatorcontrib><creatorcontrib>Sallaberger, M</creatorcontrib><title>Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Abstract The present paper discusses the basic principles of hydraulic turbines, with special emphasis on the use of computational fluid dynamics (CFD) as a tool which is being increasingly applied to gain insight into the complex three-dimensional (3D) phenomena occurring in these types of fluid machinery. The basic fluid mechanics is briefly treated for the three main types of hydraulic turbine: Pelton, Francis and axial turbines. From the vast number of applications where CFD has proven to be an important help to the design engineer, two examples have been chosen for a detailed discussion. The first example gives a comparison of experimental data and 3D Euler and 3D Navier-Stokes results for the flow in a Francis runner. The second example highlights the state-of-the-art of predicting the performance of an entire Francis turbine by means of numerical simulation.</description><subject>Computational fluid dynamics</subject><subject>Machine design</subject><subject>Mathematical models</subject><subject>Navier Stokes equations</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kT1LA0EQhhdRMEZ7y8NCq9X9zm0pQY0g2Gh9TPbmdMN9uXtXpPNH-Av9JW6MIAR0moF5n_eFmSHklLNLLpS8YlYrxYy1XAshmNgjE8EUp8Lmcp9MNjJNujgkRzGuWCph9ISUi3UZYKy9y4YxLH2L8fP9YwkxDfrgW-f7GmMGbZnFAQakXUWHV6QQhsx1TT-moe9aqLOqHn2ZlesWGu-So-9T6LcYj8lBBXXEk58-Jc-3N0_zBX14vLufXz9QJ40dKJdMatAoKqfyCrjSoEqmmFROSAtpLaW1tDOjMS9zDtLwXOGSoa1mBiGXU3Kxze1D9zZiHIrGR4d1DS12YyxmSs2YMdwk8vxfUhhrcit0As92wFU3hrRvYqSyXEnBE8S2kAtdjAGrIp2ugbAuOCs23yl2v5MsdGuJ8IK_mX_yX1Gnj4Q</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Drtina, P</creator><creator>Sallaberger, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7TC</scope></search><sort><creationdate>19990101</creationdate><title>Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications</title><author>Drtina, P ; Sallaberger, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-13035a5e2fc48fa145a4d04034c239a22245539765e8d81a36184eb0e9f76ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computational fluid dynamics</topic><topic>Machine design</topic><topic>Mathematical models</topic><topic>Navier Stokes equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drtina, P</creatorcontrib><creatorcontrib>Sallaberger, M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drtina, P</au><au>Sallaberger, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>213</volume><issue>1</issue><spage>85</spage><epage>102</epage><pages>85-102</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Abstract The present paper discusses the basic principles of hydraulic turbines, with special emphasis on the use of computational fluid dynamics (CFD) as a tool which is being increasingly applied to gain insight into the complex three-dimensional (3D) phenomena occurring in these types of fluid machinery. The basic fluid mechanics is briefly treated for the three main types of hydraulic turbine: Pelton, Francis and axial turbines. From the vast number of applications where CFD has proven to be an important help to the design engineer, two examples have been chosen for a detailed discussion. The first example gives a comparison of experimental data and 3D Euler and 3D Navier-Stokes results for the flow in a Francis runner. The second example highlights the state-of-the-art of predicting the performance of an entire Francis turbine by means of numerical simulation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/0954406991522202</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 1999-01, Vol.213 (1), p.85-102
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_miscellaneous_744706616
source SAGE Complete
subjects Computational fluid dynamics
Machine design
Mathematical models
Navier Stokes equations
title Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic%20turbines%E2%80%94basic%20principles%20and%20state-of-the-art%20computational%20fluid%20dynamics%20applications&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Drtina,%20P&rft.date=1999-01-01&rft.volume=213&rft.issue=1&rft.spage=85&rft.epage=102&rft.pages=85-102&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1243/0954406991522202&rft_dat=%3Cproquest_cross%3E26968925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234914321&rft_id=info:pmid/&rft_sage_id=10.1243_0954406991522202&rfr_iscdi=true