Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation
Objectives This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). Background The role of mineralocorticoid in the pathogenesis of AF is unknown. Methods We studied...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Cardiology 2010-02, Vol.55 (8), p.758-770 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 8 |
container_start_page | 758 |
container_title | Journal of the American College of Cardiology |
container_volume | 55 |
creator | Tsai, Chia-Ti, MD, PhD Chiang, Fu-Tien, MD, PhD Tseng, Chuen-Den, MD, PhD Hwang, Juey-Jen, MD, PhD Kuo, Kuan-Ting, MD Wu, Cho-Kai, MD Yu, Chih-Chieh, MD Wang, Yi-Chih, MD Lai, Ling-Ping, MD, PhD Lin, Jiunn-Lee, MD, PhD |
description | Objectives This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). Background The role of mineralocorticoid in the pathogenesis of AF is unknown. Methods We studied atrial expression of steroidogenesis proteins and aldosterone level in patients with and without AF, and in HL-1 atrial myocytes. We also investigated the electrophysiologic effects and signal transduction of aldosterone on atrial myocytes. Results We found basal expressions of mineralocorticoid receptors (MRs), glucocorticoid receptors, and 11-beta-hydroxysteroid dehydrogenase type 2 (11bHSD2) but not 11-beta-hydroxylase (CYP11B1) or aldosterone synthase (CYP11B2) in human atria and HL-1 myocytes. There was no significant difference of mean atrial aldosterone level between patients with AF and those with normal sinus rhythm. However, patients with AF had a significantly higher atrial MR expression compared with those with normal sinus rhythm (1.73 ± 0.24-fold, p < 0.001). Using mouse HL-1 atrial myocytes as a cellular AF model, we found that rapid depolarization increased MR expression (1.97 ± 0.72-fold, p = 0.008) through a calcium-dependent mechanism, thus augmenting the genomic effect of aldosterone signaling as evaluated by MR reporter. Aldosterone increased intracellular oxidative stress through a nongenomic pathway, which was attenuated by nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium, but not by MR-blockade spironolactone. Aldosterone increased expression of the alpha-1G and -1H subunits of the T-type calcium channel and thus increased the T-type calcium current (–13.6 ± 2.9 pA/pF vs. –4.5 ± 1.6 pA/pF, p < 0.01) and the intracellular calcium load through a genomic pathway, which were attenuated by spironolactone, but not by diphenyleneiodonium. Conclusions Expression of MR increased in AF, thus augmenting the genomic effects of aldosterone. Aldosterone induced atrial ionic remodeling and calcium overload through a genomic pathway, which was attenuated by spironolactone. These results suggest that aldosterone may play a role in AF electrical remodeling and provide insight into the treatment of AF with MR blockade. |
doi_str_mv | 10.1016/j.jacc.2009.09.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744705764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735109709039436</els_id><sourcerecordid>744705764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c580t-23e7068c4d692a1721798e90b3e798633d5610758d03a1cdfe46a39ab70ba3973</originalsourceid><addsrcrecordid>eNqFkl9rFDEUxYModq1-AR8k4INPs94kk2QCIpSltYUWwT_PIZPchazZyZrMiMUv7wxbFYooXLgQfudwb84l5DmDNQOmXu_WO-f9mgOY9VKtfEBWTMquEdLoh2QFWsiGgdEn5EmtOwBQHTOPyQkHpqFj7Yr8uBp8QVcx0PPvh4K1xjzQvKU3ccDiUva5jNHnGOgH9HgYc6FxoJfT3g30bCzRJXoR-xJTcuMidUOgjm4wpSm5Qm9ywLT4_YV9Sh5tXar47K6fks8X5582l831-3dXm7PrxssOxoYL1PPgvg3KcMc0Z9p0aKCf302nhAhSMdCyCyAc82GLrXLCuF5DP3ctTsmro--h5K8T1tHuY_XzhG7APFWr21aD1Kr9PymEkh0XfCZf3iN3eSrDvIZlEhRXkhsxU_xI-ZJrLbi1hxL3rtxaBnbJ0O7skqFdMrRLtXIWvbiznvo9ht-SX6HNwJsjgPOnfYtYbPURB48hFvSjDTn-2__tPblPcYjepS94i_XPHrZyC_bjckXLEYEBYVqhxE_0F8EJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506265293</pqid></control><display><type>article</type><title>Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>Tsai, Chia-Ti, MD, PhD ; Chiang, Fu-Tien, MD, PhD ; Tseng, Chuen-Den, MD, PhD ; Hwang, Juey-Jen, MD, PhD ; Kuo, Kuan-Ting, MD ; Wu, Cho-Kai, MD ; Yu, Chih-Chieh, MD ; Wang, Yi-Chih, MD ; Lai, Ling-Ping, MD, PhD ; Lin, Jiunn-Lee, MD, PhD</creator><creatorcontrib>Tsai, Chia-Ti, MD, PhD ; Chiang, Fu-Tien, MD, PhD ; Tseng, Chuen-Den, MD, PhD ; Hwang, Juey-Jen, MD, PhD ; Kuo, Kuan-Ting, MD ; Wu, Cho-Kai, MD ; Yu, Chih-Chieh, MD ; Wang, Yi-Chih, MD ; Lai, Ling-Ping, MD, PhD ; Lin, Jiunn-Lee, MD, PhD</creatorcontrib><description>Objectives This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). Background The role of mineralocorticoid in the pathogenesis of AF is unknown. Methods We studied atrial expression of steroidogenesis proteins and aldosterone level in patients with and without AF, and in HL-1 atrial myocytes. We also investigated the electrophysiologic effects and signal transduction of aldosterone on atrial myocytes. Results We found basal expressions of mineralocorticoid receptors (MRs), glucocorticoid receptors, and 11-beta-hydroxysteroid dehydrogenase type 2 (11bHSD2) but not 11-beta-hydroxylase (CYP11B1) or aldosterone synthase (CYP11B2) in human atria and HL-1 myocytes. There was no significant difference of mean atrial aldosterone level between patients with AF and those with normal sinus rhythm. However, patients with AF had a significantly higher atrial MR expression compared with those with normal sinus rhythm (1.73 ± 0.24-fold, p < 0.001). Using mouse HL-1 atrial myocytes as a cellular AF model, we found that rapid depolarization increased MR expression (1.97 ± 0.72-fold, p = 0.008) through a calcium-dependent mechanism, thus augmenting the genomic effect of aldosterone signaling as evaluated by MR reporter. Aldosterone increased intracellular oxidative stress through a nongenomic pathway, which was attenuated by nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium, but not by MR-blockade spironolactone. Aldosterone increased expression of the alpha-1G and -1H subunits of the T-type calcium channel and thus increased the T-type calcium current (–13.6 ± 2.9 pA/pF vs. –4.5 ± 1.6 pA/pF, p < 0.01) and the intracellular calcium load through a genomic pathway, which were attenuated by spironolactone, but not by diphenyleneiodonium. Conclusions Expression of MR increased in AF, thus augmenting the genomic effects of aldosterone. Aldosterone induced atrial ionic remodeling and calcium overload through a genomic pathway, which was attenuated by spironolactone. These results suggest that aldosterone may play a role in AF electrical remodeling and provide insight into the treatment of AF with MR blockade.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2009.09.045</identifier><identifier>PMID: 20170814</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>11-beta-Hydroxysteroid Dehydrogenase Type 2 - biosynthesis ; Adult ; Aged ; Aged, 80 and over ; aldosterone ; Aldosterone - biosynthesis ; Animals ; atrial fibrillation ; Atrial Fibrillation - genetics ; Atrial Fibrillation - metabolism ; Cardiac arrhythmia ; Cardiology ; Cardiovascular ; Cardiovascular disease ; Cell culture ; Enzymes ; Female ; Gene Expression ; Heart ; Humans ; Internal Medicine ; ionic remodeling ; Male ; Mice ; Middle Aged ; mineralocorticoid receptor ; Myocytes, Cardiac - metabolism ; Polymerase chain reaction ; Proteins ; Receptors, Glucocorticoid - biosynthesis ; Receptors, Mineralocorticoid - biosynthesis ; Rodents ; Signal Transduction ; Sinuses ; spironolactone ; Steroid 11-beta-Hydroxylase - biosynthesis</subject><ispartof>Journal of the American College of Cardiology, 2010-02, Vol.55 (8), p.758-770</ispartof><rights>American College of Cardiology Foundation</rights><rights>2010 American College of Cardiology Foundation</rights><rights>Copyright (c) 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c580t-23e7068c4d692a1721798e90b3e798633d5610758d03a1cdfe46a39ab70ba3973</citedby><cites>FETCH-LOGICAL-c580t-23e7068c4d692a1721798e90b3e798633d5610758d03a1cdfe46a39ab70ba3973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jacc.2009.09.045$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20170814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Chia-Ti, MD, PhD</creatorcontrib><creatorcontrib>Chiang, Fu-Tien, MD, PhD</creatorcontrib><creatorcontrib>Tseng, Chuen-Den, MD, PhD</creatorcontrib><creatorcontrib>Hwang, Juey-Jen, MD, PhD</creatorcontrib><creatorcontrib>Kuo, Kuan-Ting, MD</creatorcontrib><creatorcontrib>Wu, Cho-Kai, MD</creatorcontrib><creatorcontrib>Yu, Chih-Chieh, MD</creatorcontrib><creatorcontrib>Wang, Yi-Chih, MD</creatorcontrib><creatorcontrib>Lai, Ling-Ping, MD, PhD</creatorcontrib><creatorcontrib>Lin, Jiunn-Lee, MD, PhD</creatorcontrib><title>Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Objectives This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). Background The role of mineralocorticoid in the pathogenesis of AF is unknown. Methods We studied atrial expression of steroidogenesis proteins and aldosterone level in patients with and without AF, and in HL-1 atrial myocytes. We also investigated the electrophysiologic effects and signal transduction of aldosterone on atrial myocytes. Results We found basal expressions of mineralocorticoid receptors (MRs), glucocorticoid receptors, and 11-beta-hydroxysteroid dehydrogenase type 2 (11bHSD2) but not 11-beta-hydroxylase (CYP11B1) or aldosterone synthase (CYP11B2) in human atria and HL-1 myocytes. There was no significant difference of mean atrial aldosterone level between patients with AF and those with normal sinus rhythm. However, patients with AF had a significantly higher atrial MR expression compared with those with normal sinus rhythm (1.73 ± 0.24-fold, p < 0.001). Using mouse HL-1 atrial myocytes as a cellular AF model, we found that rapid depolarization increased MR expression (1.97 ± 0.72-fold, p = 0.008) through a calcium-dependent mechanism, thus augmenting the genomic effect of aldosterone signaling as evaluated by MR reporter. Aldosterone increased intracellular oxidative stress through a nongenomic pathway, which was attenuated by nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium, but not by MR-blockade spironolactone. Aldosterone increased expression of the alpha-1G and -1H subunits of the T-type calcium channel and thus increased the T-type calcium current (–13.6 ± 2.9 pA/pF vs. –4.5 ± 1.6 pA/pF, p < 0.01) and the intracellular calcium load through a genomic pathway, which were attenuated by spironolactone, but not by diphenyleneiodonium. Conclusions Expression of MR increased in AF, thus augmenting the genomic effects of aldosterone. Aldosterone induced atrial ionic remodeling and calcium overload through a genomic pathway, which was attenuated by spironolactone. These results suggest that aldosterone may play a role in AF electrical remodeling and provide insight into the treatment of AF with MR blockade.</description><subject>11-beta-Hydroxysteroid Dehydrogenase Type 2 - biosynthesis</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>aldosterone</subject><subject>Aldosterone - biosynthesis</subject><subject>Animals</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - genetics</subject><subject>Atrial Fibrillation - metabolism</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cardiovascular</subject><subject>Cardiovascular disease</subject><subject>Cell culture</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Heart</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>ionic remodeling</subject><subject>Male</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>mineralocorticoid receptor</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Receptors, Glucocorticoid - biosynthesis</subject><subject>Receptors, Mineralocorticoid - biosynthesis</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Sinuses</subject><subject>spironolactone</subject><subject>Steroid 11-beta-Hydroxylase - biosynthesis</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl9rFDEUxYModq1-AR8k4INPs94kk2QCIpSltYUWwT_PIZPchazZyZrMiMUv7wxbFYooXLgQfudwb84l5DmDNQOmXu_WO-f9mgOY9VKtfEBWTMquEdLoh2QFWsiGgdEn5EmtOwBQHTOPyQkHpqFj7Yr8uBp8QVcx0PPvh4K1xjzQvKU3ccDiUva5jNHnGOgH9HgYc6FxoJfT3g30bCzRJXoR-xJTcuMidUOgjm4wpSm5Qm9ywLT4_YV9Sh5tXar47K6fks8X5582l831-3dXm7PrxssOxoYL1PPgvg3KcMc0Z9p0aKCf302nhAhSMdCyCyAc82GLrXLCuF5DP3ctTsmro--h5K8T1tHuY_XzhG7APFWr21aD1Kr9PymEkh0XfCZf3iN3eSrDvIZlEhRXkhsxU_xI-ZJrLbi1hxL3rtxaBnbJ0O7skqFdMrRLtXIWvbiznvo9ht-SX6HNwJsjgPOnfYtYbPURB48hFvSjDTn-2__tPblPcYjepS94i_XPHrZyC_bjckXLEYEBYVqhxE_0F8EJ</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Tsai, Chia-Ti, MD, PhD</creator><creator>Chiang, Fu-Tien, MD, PhD</creator><creator>Tseng, Chuen-Den, MD, PhD</creator><creator>Hwang, Juey-Jen, MD, PhD</creator><creator>Kuo, Kuan-Ting, MD</creator><creator>Wu, Cho-Kai, MD</creator><creator>Yu, Chih-Chieh, MD</creator><creator>Wang, Yi-Chih, MD</creator><creator>Lai, Ling-Ping, MD, PhD</creator><creator>Lin, Jiunn-Lee, MD, PhD</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>7QP</scope></search><sort><creationdate>20100223</creationdate><title>Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation</title><author>Tsai, Chia-Ti, MD, PhD ; Chiang, Fu-Tien, MD, PhD ; Tseng, Chuen-Den, MD, PhD ; Hwang, Juey-Jen, MD, PhD ; Kuo, Kuan-Ting, MD ; Wu, Cho-Kai, MD ; Yu, Chih-Chieh, MD ; Wang, Yi-Chih, MD ; Lai, Ling-Ping, MD, PhD ; Lin, Jiunn-Lee, MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c580t-23e7068c4d692a1721798e90b3e798633d5610758d03a1cdfe46a39ab70ba3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>11-beta-Hydroxysteroid Dehydrogenase Type 2 - biosynthesis</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>aldosterone</topic><topic>Aldosterone - biosynthesis</topic><topic>Animals</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - genetics</topic><topic>Atrial Fibrillation - metabolism</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cardiovascular</topic><topic>Cardiovascular disease</topic><topic>Cell culture</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Heart</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>ionic remodeling</topic><topic>Male</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>mineralocorticoid receptor</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Receptors, Glucocorticoid - biosynthesis</topic><topic>Receptors, Mineralocorticoid - biosynthesis</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Sinuses</topic><topic>spironolactone</topic><topic>Steroid 11-beta-Hydroxylase - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Chia-Ti, MD, PhD</creatorcontrib><creatorcontrib>Chiang, Fu-Tien, MD, PhD</creatorcontrib><creatorcontrib>Tseng, Chuen-Den, MD, PhD</creatorcontrib><creatorcontrib>Hwang, Juey-Jen, MD, PhD</creatorcontrib><creatorcontrib>Kuo, Kuan-Ting, MD</creatorcontrib><creatorcontrib>Wu, Cho-Kai, MD</creatorcontrib><creatorcontrib>Yu, Chih-Chieh, MD</creatorcontrib><creatorcontrib>Wang, Yi-Chih, MD</creatorcontrib><creatorcontrib>Lai, Ling-Ping, MD, PhD</creatorcontrib><creatorcontrib>Lin, Jiunn-Lee, MD, PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Chia-Ti, MD, PhD</au><au>Chiang, Fu-Tien, MD, PhD</au><au>Tseng, Chuen-Den, MD, PhD</au><au>Hwang, Juey-Jen, MD, PhD</au><au>Kuo, Kuan-Ting, MD</au><au>Wu, Cho-Kai, MD</au><au>Yu, Chih-Chieh, MD</au><au>Wang, Yi-Chih, MD</au><au>Lai, Ling-Ping, MD, PhD</au><au>Lin, Jiunn-Lee, MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2010-02-23</date><risdate>2010</risdate><volume>55</volume><issue>8</issue><spage>758</spage><epage>770</epage><pages>758-770</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Objectives This study was designed to evaluate the status of steroidogenesis proteins and de novo synthesis of aldosterone in the atrium, and relationships of these factors to atrial fibrillation (AF). Background The role of mineralocorticoid in the pathogenesis of AF is unknown. Methods We studied atrial expression of steroidogenesis proteins and aldosterone level in patients with and without AF, and in HL-1 atrial myocytes. We also investigated the electrophysiologic effects and signal transduction of aldosterone on atrial myocytes. Results We found basal expressions of mineralocorticoid receptors (MRs), glucocorticoid receptors, and 11-beta-hydroxysteroid dehydrogenase type 2 (11bHSD2) but not 11-beta-hydroxylase (CYP11B1) or aldosterone synthase (CYP11B2) in human atria and HL-1 myocytes. There was no significant difference of mean atrial aldosterone level between patients with AF and those with normal sinus rhythm. However, patients with AF had a significantly higher atrial MR expression compared with those with normal sinus rhythm (1.73 ± 0.24-fold, p < 0.001). Using mouse HL-1 atrial myocytes as a cellular AF model, we found that rapid depolarization increased MR expression (1.97 ± 0.72-fold, p = 0.008) through a calcium-dependent mechanism, thus augmenting the genomic effect of aldosterone signaling as evaluated by MR reporter. Aldosterone increased intracellular oxidative stress through a nongenomic pathway, which was attenuated by nicotinamide adenine dinucleotide phosphate oxidase inhibitor diphenyleneiodonium, but not by MR-blockade spironolactone. Aldosterone increased expression of the alpha-1G and -1H subunits of the T-type calcium channel and thus increased the T-type calcium current (–13.6 ± 2.9 pA/pF vs. –4.5 ± 1.6 pA/pF, p < 0.01) and the intracellular calcium load through a genomic pathway, which were attenuated by spironolactone, but not by diphenyleneiodonium. Conclusions Expression of MR increased in AF, thus augmenting the genomic effects of aldosterone. Aldosterone induced atrial ionic remodeling and calcium overload through a genomic pathway, which was attenuated by spironolactone. These results suggest that aldosterone may play a role in AF electrical remodeling and provide insight into the treatment of AF with MR blockade.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20170814</pmid><doi>10.1016/j.jacc.2009.09.045</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1097 |
ispartof | Journal of the American College of Cardiology, 2010-02, Vol.55 (8), p.758-770 |
issn | 0735-1097 1558-3597 |
language | eng |
recordid | cdi_proquest_miscellaneous_744705764 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | 11-beta-Hydroxysteroid Dehydrogenase Type 2 - biosynthesis Adult Aged Aged, 80 and over aldosterone Aldosterone - biosynthesis Animals atrial fibrillation Atrial Fibrillation - genetics Atrial Fibrillation - metabolism Cardiac arrhythmia Cardiology Cardiovascular Cardiovascular disease Cell culture Enzymes Female Gene Expression Heart Humans Internal Medicine ionic remodeling Male Mice Middle Aged mineralocorticoid receptor Myocytes, Cardiac - metabolism Polymerase chain reaction Proteins Receptors, Glucocorticoid - biosynthesis Receptors, Mineralocorticoid - biosynthesis Rodents Signal Transduction Sinuses spironolactone Steroid 11-beta-Hydroxylase - biosynthesis |
title | Increased Expression of Mineralocorticoid Receptor in Human Atrial Fibrillation and a Cellular Model of Atrial Fibrillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20Expression%20of%20Mineralocorticoid%20Receptor%20in%20Human%20Atrial%20Fibrillation%20and%20a%20Cellular%20Model%20of%20Atrial%20Fibrillation&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Tsai,%20Chia-Ti,%20MD,%20PhD&rft.date=2010-02-23&rft.volume=55&rft.issue=8&rft.spage=758&rft.epage=770&rft.pages=758-770&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2009.09.045&rft_dat=%3Cproquest_cross%3E744705764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506265293&rft_id=info:pmid/20170814&rft_els_id=S0735109709039436&rfr_iscdi=true |