Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion
An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strai...
Gespeichert in:
Veröffentlicht in: | The International journal of pressure vessels and piping 1999-04, Vol.76 (5), p.291-297 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | 5 |
container_start_page | 291 |
container_title | The International journal of pressure vessels and piping |
container_volume | 76 |
creator | Gao, Xin-Lin Rowlands, Robert E. |
description | An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites. |
doi_str_mv | 10.1016/S0308-0161(99)00002-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744704961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016199000022</els_id><sourcerecordid>744704961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUha0KpIbSR6jkBeJnMcUej8f1CkUVBaRKLGjX1o3nDjFy7GA7bfMUvHI9SRVYFW_G8nznHt1zCDnj7Jwz3n_8wQS7aOqNv9f6A6unbdojMuMXSjdCdvwFmR2QY_Iq51-MccVkPyN_5gH8tjgLnuboN8XFQMeYaFkiXXsISHNJ4AJ1wfpNnn6vU1x4XNE4UggUPeSqp-t4j6nxcE-XkAYMLvykKyjJPVAbQ6kjppd_BHbrXRjSzvow_DV5OYLPePr0PSG3V59vLr8219-_fLucXzdWaF0aicJKrplVMIJogbe8RqGxriX7VrFFBwuwSgiQuu8YQ2U7DqOwo5JSDgtxQt7t59Zlfm8wF7Ny2aKfNo6bbFTXKdbpnlfy7bNkdZNtzbOCcg_aFHNOOJp1citIW8OZmYoyu6LM1ILR2uyKMm3VvXkygFyzGBME6_JfseqUbkXFPu0xrLHcOUwmW4fB4uAS2mKG6P5j9AiR3anB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27052001</pqid></control><display><type>article</type><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><source>Elsevier ScienceDirect Journals</source><creator>Gao, Xin-Lin ; Rowlands, Robert E.</creator><creatorcontrib>Gao, Xin-Lin ; Rowlands, Robert E.</creatorcontrib><description>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/S0308-0161(99)00002-2</identifier><identifier>CODEN: PRVPAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Boundary conditions ; Elastic moduli ; Elasticity. Plasticity ; Elasto-plastic ; Elastoplasticity ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inclusion problems ; Inelasticity (thermoplasticity, viscoplasticity...) ; Iterative methods ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal-matrix composites ; Metallic matrix composites ; Metals. Metallurgy ; Physics ; Plane strain ; Plastic deformation ; Poisson ratio ; Problem solving ; Solid mechanics ; Strain hardening ; Stress analysis ; Stress/strain analysis ; Structural and continuum mechanics ; Viscoelasticity, plasticity, viscoplasticity</subject><ispartof>The International journal of pressure vessels and piping, 1999-04, Vol.76 (5), p.291-297</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</citedby><cites>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0308-0161(99)00002-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1747923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xin-Lin</creatorcontrib><creatorcontrib>Rowlands, Robert E.</creatorcontrib><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><title>The International journal of pressure vessels and piping</title><description>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</description><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Elastic moduli</subject><subject>Elasticity. Plasticity</subject><subject>Elasto-plastic</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inclusion problems</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Iterative methods</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal-matrix composites</subject><subject>Metallic matrix composites</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Plane strain</subject><subject>Plastic deformation</subject><subject>Poisson ratio</subject><subject>Problem solving</subject><subject>Solid mechanics</subject><subject>Strain hardening</subject><subject>Stress analysis</subject><subject>Stress/strain analysis</subject><subject>Structural and continuum mechanics</subject><subject>Viscoelasticity, plasticity, viscoplasticity</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUha0KpIbSR6jkBeJnMcUej8f1CkUVBaRKLGjX1o3nDjFy7GA7bfMUvHI9SRVYFW_G8nznHt1zCDnj7Jwz3n_8wQS7aOqNv9f6A6unbdojMuMXSjdCdvwFmR2QY_Iq51-MccVkPyN_5gH8tjgLnuboN8XFQMeYaFkiXXsISHNJ4AJ1wfpNnn6vU1x4XNE4UggUPeSqp-t4j6nxcE-XkAYMLvykKyjJPVAbQ6kjppd_BHbrXRjSzvow_DV5OYLPePr0PSG3V59vLr8219-_fLucXzdWaF0aicJKrplVMIJogbe8RqGxriX7VrFFBwuwSgiQuu8YQ2U7DqOwo5JSDgtxQt7t59Zlfm8wF7Ny2aKfNo6bbFTXKdbpnlfy7bNkdZNtzbOCcg_aFHNOOJp1citIW8OZmYoyu6LM1ILR2uyKMm3VvXkygFyzGBME6_JfseqUbkXFPu0xrLHcOUwmW4fB4uAS2mKG6P5j9AiR3anB</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Gao, Xin-Lin</creator><creator>Rowlands, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>19990401</creationdate><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><author>Gao, Xin-Lin ; Rowlands, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Elastic moduli</topic><topic>Elasticity. Plasticity</topic><topic>Elasto-plastic</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inclusion problems</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Iterative methods</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal-matrix composites</topic><topic>Metallic matrix composites</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Plane strain</topic><topic>Plastic deformation</topic><topic>Poisson ratio</topic><topic>Problem solving</topic><topic>Solid mechanics</topic><topic>Strain hardening</topic><topic>Stress analysis</topic><topic>Stress/strain analysis</topic><topic>Structural and continuum mechanics</topic><topic>Viscoelasticity, plasticity, viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xin-Lin</creatorcontrib><creatorcontrib>Rowlands, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xin-Lin</au><au>Rowlands, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>1999-04-01</date><risdate>1999</risdate><volume>76</volume><issue>5</issue><spage>291</spage><epage>297</epage><pages>291-297</pages><issn>0308-0161</issn><eissn>1879-3541</eissn><coden>PRVPAS</coden><abstract>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0308-0161(99)00002-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-0161 |
ispartof | The International journal of pressure vessels and piping, 1999-04, Vol.76 (5), p.291-297 |
issn | 0308-0161 1879-3541 |
language | eng |
recordid | cdi_proquest_miscellaneous_744704961 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boundary conditions Elastic moduli Elasticity. Plasticity Elasto-plastic Elastoplasticity Exact sciences and technology Fundamental areas of phenomenology (including applications) Inclusion problems Inelasticity (thermoplasticity, viscoplasticity...) Iterative methods Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metal-matrix composites Metallic matrix composites Metals. Metallurgy Physics Plane strain Plastic deformation Poisson ratio Problem solving Solid mechanics Strain hardening Stress analysis Stress/strain analysis Structural and continuum mechanics Viscoelasticity, plasticity, viscoplasticity |
title | Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20for%20the%20plane%20strain%20inclusion%20problem%20of%20an%20elastic%20power-law%20hardening%20matrix%20containing%20an%20elastic%20cylindrical%20inclusion&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Gao,%20Xin-Lin&rft.date=1999-04-01&rft.volume=76&rft.issue=5&rft.spage=291&rft.epage=297&rft.pages=291-297&rft.issn=0308-0161&rft.eissn=1879-3541&rft.coden=PRVPAS&rft_id=info:doi/10.1016/S0308-0161(99)00002-2&rft_dat=%3Cproquest_cross%3E744704961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27052001&rft_id=info:pmid/&rft_els_id=S0308016199000022&rfr_iscdi=true |