Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion

An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of pressure vessels and piping 1999-04, Vol.76 (5), p.291-297
Hauptverfasser: Gao, Xin-Lin, Rowlands, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 5
container_start_page 291
container_title The International journal of pressure vessels and piping
container_volume 76
creator Gao, Xin-Lin
Rowlands, Robert E.
description An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.
doi_str_mv 10.1016/S0308-0161(99)00002-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744704961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016199000022</els_id><sourcerecordid>744704961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUha0KpIbSR6jkBeJnMcUej8f1CkUVBaRKLGjX1o3nDjFy7GA7bfMUvHI9SRVYFW_G8nznHt1zCDnj7Jwz3n_8wQS7aOqNv9f6A6unbdojMuMXSjdCdvwFmR2QY_Iq51-MccVkPyN_5gH8tjgLnuboN8XFQMeYaFkiXXsISHNJ4AJ1wfpNnn6vU1x4XNE4UggUPeSqp-t4j6nxcE-XkAYMLvykKyjJPVAbQ6kjppd_BHbrXRjSzvow_DV5OYLPePr0PSG3V59vLr8219-_fLucXzdWaF0aicJKrplVMIJogbe8RqGxriX7VrFFBwuwSgiQuu8YQ2U7DqOwo5JSDgtxQt7t59Zlfm8wF7Ny2aKfNo6bbFTXKdbpnlfy7bNkdZNtzbOCcg_aFHNOOJp1citIW8OZmYoyu6LM1ILR2uyKMm3VvXkygFyzGBME6_JfseqUbkXFPu0xrLHcOUwmW4fB4uAS2mKG6P5j9AiR3anB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27052001</pqid></control><display><type>article</type><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><source>Elsevier ScienceDirect Journals</source><creator>Gao, Xin-Lin ; Rowlands, Robert E.</creator><creatorcontrib>Gao, Xin-Lin ; Rowlands, Robert E.</creatorcontrib><description>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/S0308-0161(99)00002-2</identifier><identifier>CODEN: PRVPAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Boundary conditions ; Elastic moduli ; Elasticity. Plasticity ; Elasto-plastic ; Elastoplasticity ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inclusion problems ; Inelasticity (thermoplasticity, viscoplasticity...) ; Iterative methods ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal-matrix composites ; Metallic matrix composites ; Metals. Metallurgy ; Physics ; Plane strain ; Plastic deformation ; Poisson ratio ; Problem solving ; Solid mechanics ; Strain hardening ; Stress analysis ; Stress/strain analysis ; Structural and continuum mechanics ; Viscoelasticity, plasticity, viscoplasticity</subject><ispartof>The International journal of pressure vessels and piping, 1999-04, Vol.76 (5), p.291-297</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</citedby><cites>FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0308-0161(99)00002-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1747923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xin-Lin</creatorcontrib><creatorcontrib>Rowlands, Robert E.</creatorcontrib><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><title>The International journal of pressure vessels and piping</title><description>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</description><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Elastic moduli</subject><subject>Elasticity. Plasticity</subject><subject>Elasto-plastic</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inclusion problems</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Iterative methods</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal-matrix composites</subject><subject>Metallic matrix composites</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Plane strain</subject><subject>Plastic deformation</subject><subject>Poisson ratio</subject><subject>Problem solving</subject><subject>Solid mechanics</subject><subject>Strain hardening</subject><subject>Stress analysis</subject><subject>Stress/strain analysis</subject><subject>Structural and continuum mechanics</subject><subject>Viscoelasticity, plasticity, viscoplasticity</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUha0KpIbSR6jkBeJnMcUej8f1CkUVBaRKLGjX1o3nDjFy7GA7bfMUvHI9SRVYFW_G8nznHt1zCDnj7Jwz3n_8wQS7aOqNv9f6A6unbdojMuMXSjdCdvwFmR2QY_Iq51-MccVkPyN_5gH8tjgLnuboN8XFQMeYaFkiXXsISHNJ4AJ1wfpNnn6vU1x4XNE4UggUPeSqp-t4j6nxcE-XkAYMLvykKyjJPVAbQ6kjppd_BHbrXRjSzvow_DV5OYLPePr0PSG3V59vLr8219-_fLucXzdWaF0aicJKrplVMIJogbe8RqGxriX7VrFFBwuwSgiQuu8YQ2U7DqOwo5JSDgtxQt7t59Zlfm8wF7Ny2aKfNo6bbFTXKdbpnlfy7bNkdZNtzbOCcg_aFHNOOJp1citIW8OZmYoyu6LM1ILR2uyKMm3VvXkygFyzGBME6_JfseqUbkXFPu0xrLHcOUwmW4fB4uAS2mKG6P5j9AiR3anB</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Gao, Xin-Lin</creator><creator>Rowlands, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>19990401</creationdate><title>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</title><author>Gao, Xin-Lin ; Rowlands, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-5e3c5190c7afa32a1211019e01756270b4abac733a596400e7c41af3cf7555db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Elastic moduli</topic><topic>Elasticity. Plasticity</topic><topic>Elasto-plastic</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inclusion problems</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Iterative methods</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal-matrix composites</topic><topic>Metallic matrix composites</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Plane strain</topic><topic>Plastic deformation</topic><topic>Poisson ratio</topic><topic>Problem solving</topic><topic>Solid mechanics</topic><topic>Strain hardening</topic><topic>Stress analysis</topic><topic>Stress/strain analysis</topic><topic>Structural and continuum mechanics</topic><topic>Viscoelasticity, plasticity, viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xin-Lin</creatorcontrib><creatorcontrib>Rowlands, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xin-Lin</au><au>Rowlands, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>1999-04-01</date><risdate>1999</risdate><volume>76</volume><issue>5</issue><spage>291</spage><epage>297</epage><pages>291-297</pages><issn>0308-0161</issn><eissn>1879-3541</eissn><coden>PRVPAS</coden><abstract>An elasto-plastic analytical solution is presented for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion and subjected to equi-biaxial tension. Hencky’s deformation theory and von Mises’ yield criterion are used. All stress, strain and displacement components are derived in explicit forms in terms of two constant parameters, which are determined from the boundary conditions using a simple iterative procedure. Three specific solutions of practical interest are obtained as limiting cases. Illustrative numerical results are also provided to demonstrate applications of the solution. It is quantitatively shown that the extent of plastic deformation in the matrix is controlled by the ratio of Young’s moduli of the inclusion and matrix materials, Poisson’s ratio of the inclusion material and the strain-hardening effect of the matrix material, of which the first two factors are dominant. These findings are of practical importance to the design of fiber-filled metal-matrix composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0308-0161(99)00002-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-0161
ispartof The International journal of pressure vessels and piping, 1999-04, Vol.76 (5), p.291-297
issn 0308-0161
1879-3541
language eng
recordid cdi_proquest_miscellaneous_744704961
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boundary conditions
Elastic moduli
Elasticity. Plasticity
Elasto-plastic
Elastoplasticity
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inclusion problems
Inelasticity (thermoplasticity, viscoplasticity...)
Iterative methods
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metal-matrix composites
Metallic matrix composites
Metals. Metallurgy
Physics
Plane strain
Plastic deformation
Poisson ratio
Problem solving
Solid mechanics
Strain hardening
Stress analysis
Stress/strain analysis
Structural and continuum mechanics
Viscoelasticity, plasticity, viscoplasticity
title Analytical solution for the plane strain inclusion problem of an elastic power-law hardening matrix containing an elastic cylindrical inclusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20for%20the%20plane%20strain%20inclusion%20problem%20of%20an%20elastic%20power-law%20hardening%20matrix%20containing%20an%20elastic%20cylindrical%20inclusion&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Gao,%20Xin-Lin&rft.date=1999-04-01&rft.volume=76&rft.issue=5&rft.spage=291&rft.epage=297&rft.pages=291-297&rft.issn=0308-0161&rft.eissn=1879-3541&rft.coden=PRVPAS&rft_id=info:doi/10.1016/S0308-0161(99)00002-2&rft_dat=%3Cproquest_cross%3E744704961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27052001&rft_id=info:pmid/&rft_els_id=S0308016199000022&rfr_iscdi=true