Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms

In this research, a turning process is modeled adaptively by a backpropagation, multilayered neural network with an iterative learning method, and cutting parameters of the process model are optimized through genetic algorithms (GAs). Some constraints were given on the input conditions and the proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Precision engineering 1998-10, Vol.22 (4), p.243-251
Hauptverfasser: Ko, Tae Jo, Kim, Hee Sool
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 4
container_start_page 243
container_title Precision engineering
container_volume 22
creator Ko, Tae Jo
Kim, Hee Sool
description In this research, a turning process is modeled adaptively by a backpropagation, multilayered neural network with an iterative learning method, and cutting parameters of the process model are optimized through genetic algorithms (GAs). Some constraints were given on the input conditions and the process outputs to provide for the desired surface integrity and to protect the machine tool. Introducing penalty values, which are included in the fitness evaluation of the GAs, we can solve such a constrained problem. Experimental results show that the neural network has the ability to model the turning process on-line, and such cutting conditions as spindle speed and feed rate can be adaptively regulated for maximizing the material removal rate using the GAs.
doi_str_mv 10.1016/S0141-6359(98)00019-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744704304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141635998000191</els_id><sourcerecordid>744704304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2e70454f92ef382d2237d4a2803f2e608fe32e920c93dd63626d4a3738a2a1f83</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKEHQT1U8-im6Ulk8QULHnxcQ0gmNdI2a5Iu-O3NPtCjMDAw85v5z_wROiX4imDCr18wqUjJ2ay5aMQlxpg0JdlDEyJqVlJW0300-UUO0VGMnxmqBa4m6P12TH7wvR9joceU3NAWSxVUDwlCEaAdO5WcH4oxrlvKqGVyKyh6b6DbVAZTtDBAcrpQXeuDSx99PEYHVnURTnZ5it7u717nj-Xi-eFpfrsoNeMilRRqXM0q21CwTFBD87WmUlRgZilwLCwwCg3FumHGcMYpz21WM6GoIlawKTrf7l0G_zVCTLJ3UUPXqQHyS7KuqqzAckzRbEvq4GMMYOUyuF6Fb0mwXNsoNzbKtUeyEXJjoyR57mynoKJWnQ1q0C7-DXMq6gpn7GaLQf525SDIqB0MGowLoJM03v0j9AP0Soc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744704304</pqid></control><display><type>article</type><title>Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ko, Tae Jo ; Kim, Hee Sool</creator><creatorcontrib>Ko, Tae Jo ; Kim, Hee Sool</creatorcontrib><description>In this research, a turning process is modeled adaptively by a backpropagation, multilayered neural network with an iterative learning method, and cutting parameters of the process model are optimized through genetic algorithms (GAs). Some constraints were given on the input conditions and the process outputs to provide for the desired surface integrity and to protect the machine tool. Introducing penalty values, which are included in the fitness evaluation of the GAs, we can solve such a constrained problem. Experimental results show that the neural network has the ability to model the turning process on-line, and such cutting conditions as spindle speed and feed rate can be adaptively regulated for maximizing the material removal rate using the GAs.</description><identifier>ISSN: 0141-6359</identifier><identifier>EISSN: 1873-2372</identifier><identifier>DOI: 10.1016/S0141-6359(98)00019-1</identifier><identifier>CODEN: PREGDL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adaptive control systems ; adaptive modeling ; Applied sciences ; Artificial intelligence ; Backpropagation ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Genetic algorithms ; Iterative methods ; Mechanical engineering. Machine design ; neural network ; Neural networks ; optimization ; Turning ; turning process</subject><ispartof>Precision engineering, 1998-10, Vol.22 (4), p.243-251</ispartof><rights>1998 Elsevier Science Inc.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2e70454f92ef382d2237d4a2803f2e608fe32e920c93dd63626d4a3738a2a1f83</citedby><cites>FETCH-LOGICAL-c368t-2e70454f92ef382d2237d4a2803f2e608fe32e920c93dd63626d4a3738a2a1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0141-6359(98)00019-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1628740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Tae Jo</creatorcontrib><creatorcontrib>Kim, Hee Sool</creatorcontrib><title>Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms</title><title>Precision engineering</title><description>In this research, a turning process is modeled adaptively by a backpropagation, multilayered neural network with an iterative learning method, and cutting parameters of the process model are optimized through genetic algorithms (GAs). Some constraints were given on the input conditions and the process outputs to provide for the desired surface integrity and to protect the machine tool. Introducing penalty values, which are included in the fitness evaluation of the GAs, we can solve such a constrained problem. Experimental results show that the neural network has the ability to model the turning process on-line, and such cutting conditions as spindle speed and feed rate can be adaptively regulated for maximizing the material removal rate using the GAs.</description><subject>Adaptive control systems</subject><subject>adaptive modeling</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Backpropagation</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Iterative methods</subject><subject>Mechanical engineering. Machine design</subject><subject>neural network</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Turning</subject><subject>turning process</subject><issn>0141-6359</issn><issn>1873-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKEHQT1U8-im6Ulk8QULHnxcQ0gmNdI2a5Iu-O3NPtCjMDAw85v5z_wROiX4imDCr18wqUjJ2ay5aMQlxpg0JdlDEyJqVlJW0300-UUO0VGMnxmqBa4m6P12TH7wvR9joceU3NAWSxVUDwlCEaAdO5WcH4oxrlvKqGVyKyh6b6DbVAZTtDBAcrpQXeuDSx99PEYHVnURTnZ5it7u717nj-Xi-eFpfrsoNeMilRRqXM0q21CwTFBD87WmUlRgZilwLCwwCg3FumHGcMYpz21WM6GoIlawKTrf7l0G_zVCTLJ3UUPXqQHyS7KuqqzAckzRbEvq4GMMYOUyuF6Fb0mwXNsoNzbKtUeyEXJjoyR57mynoKJWnQ1q0C7-DXMq6gpn7GaLQf525SDIqB0MGowLoJM03v0j9AP0Soc8</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Ko, Tae Jo</creator><creator>Kim, Hee Sool</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19981001</creationdate><title>Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms</title><author>Ko, Tae Jo ; Kim, Hee Sool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2e70454f92ef382d2237d4a2803f2e608fe32e920c93dd63626d4a3738a2a1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adaptive control systems</topic><topic>adaptive modeling</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Backpropagation</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Iterative methods</topic><topic>Mechanical engineering. Machine design</topic><topic>neural network</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Turning</topic><topic>turning process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Tae Jo</creatorcontrib><creatorcontrib>Kim, Hee Sool</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Precision engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Tae Jo</au><au>Kim, Hee Sool</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms</atitle><jtitle>Precision engineering</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>22</volume><issue>4</issue><spage>243</spage><epage>251</epage><pages>243-251</pages><issn>0141-6359</issn><eissn>1873-2372</eissn><coden>PREGDL</coden><abstract>In this research, a turning process is modeled adaptively by a backpropagation, multilayered neural network with an iterative learning method, and cutting parameters of the process model are optimized through genetic algorithms (GAs). Some constraints were given on the input conditions and the process outputs to provide for the desired surface integrity and to protect the machine tool. Introducing penalty values, which are included in the fitness evaluation of the GAs, we can solve such a constrained problem. Experimental results show that the neural network has the ability to model the turning process on-line, and such cutting conditions as spindle speed and feed rate can be adaptively regulated for maximizing the material removal rate using the GAs.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0141-6359(98)00019-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-6359
ispartof Precision engineering, 1998-10, Vol.22 (4), p.243-251
issn 0141-6359
1873-2372
language eng
recordid cdi_proquest_miscellaneous_744704304
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive control systems
adaptive modeling
Applied sciences
Artificial intelligence
Backpropagation
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Genetic algorithms
Iterative methods
Mechanical engineering. Machine design
neural network
Neural networks
optimization
Turning
turning process
title Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20cutting%20parameter%20regulation%20using%20adaptive%20modeling%20and%20genetic%20algorithms&rft.jtitle=Precision%20engineering&rft.au=Ko,%20Tae%20Jo&rft.date=1998-10-01&rft.volume=22&rft.issue=4&rft.spage=243&rft.epage=251&rft.pages=243-251&rft.issn=0141-6359&rft.eissn=1873-2372&rft.coden=PREGDL&rft_id=info:doi/10.1016/S0141-6359(98)00019-1&rft_dat=%3Cproquest_cross%3E744704304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744704304&rft_id=info:pmid/&rft_els_id=S0141635998000191&rfr_iscdi=true