Generalizing a nonlinear geophysical flood theory to medium-sized river networks
The central hypothesis of a nonlinear geophysical flood theory postulates that, given space‐time rainfall intensity for a rainfall‐runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self‐similar river network produc...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2010-06, Vol.37 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 37 |
creator | Gupta, Vijay K. Mantilla, Ricardo Troutman, Brent M. Dawdy, David Krajewski, Witold F. |
description | The central hypothesis of a nonlinear geophysical flood theory postulates that, given space‐time rainfall intensity for a rainfall‐runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self‐similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400‐km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall‐runoff events. Scaling in peak discharges would hold in a non‐stationary climate due to global warming but its slope and intercept would change. |
doi_str_mv | 10.1029/2009GL041540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744702800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744702800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5655-4b5a8c87693bb0d205c177d939790159842e351d8868b8be7c9a1aa2a85b48cc3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMouFbf_ABBEH1w9OZ_8ihVR2FQEa2PIZPJtmlnkzWZtW4_vSlbivjQp3vh_s6Bew5CTwm8JkDNGwpg-gE4ERzuoRUxnHcaQN1Hq3ZpO1XyIXpU6zkAMGBkhb72IYXi5ngV0yl2OOU0xxRcwachb8_2NXo34_Wc84SXs5DLHi8Zb8IUd5uuxqsw4RJ_h4JTWC5zuaiP0YO1m2t4cjOP0I8P778ff-yGL_2n47dD54QUouOjcNprJQ0bR5goCE-UmgwzygARRnMamCCT1lKPegzKG0eco06LkWvv2RF6cfDdlvxrF-piN7H6MM8uhbyrVnGugLbvG_nyTpIo1jKiRJmGPvsPPc-7ktofVknCqVSgG_TqAPmSay1hbbclblzZWwL2ugf7bw8Nf37j6WrLcl1c8rHeamjrgQp5bUsP3GWcw_5OT9t_G6iUWjRRdxDFuoQ_tyJXLqxUTAn783Nv2Qnj78RA7An7C6VVo1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761426708</pqid></control><display><type>article</type><title>Generalizing a nonlinear geophysical flood theory to medium-sized river networks</title><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Gupta, Vijay K. ; Mantilla, Ricardo ; Troutman, Brent M. ; Dawdy, David ; Krajewski, Witold F.</creator><creatorcontrib>Gupta, Vijay K. ; Mantilla, Ricardo ; Troutman, Brent M. ; Dawdy, David ; Krajewski, Witold F.</creatorcontrib><description>The central hypothesis of a nonlinear geophysical flood theory postulates that, given space‐time rainfall intensity for a rainfall‐runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self‐similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400‐km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall‐runoff events. Scaling in peak discharges would hold in a non‐stationary climate due to global warming but its slope and intercept would change.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL041540</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Climate ; Climate change ; Differential equations ; Drainage area ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flood peak ; Floods ; Freshwater ; Geomorphology ; Geophysics ; Global warming ; Hydrology ; Networks ; Nonlinearity ; Power law ; Rainfall intensity ; Rainfall-runoff relationships ; River basins ; River networks ; Rivers ; scaling theory ; Self-similarity</subject><ispartof>Geophysical research letters, 2010-06, Vol.37 (11), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5655-4b5a8c87693bb0d205c177d939790159842e351d8868b8be7c9a1aa2a85b48cc3</citedby><cites>FETCH-LOGICAL-a5655-4b5a8c87693bb0d205c177d939790159842e351d8868b8be7c9a1aa2a85b48cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL041540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL041540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23032568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Vijay K.</creatorcontrib><creatorcontrib>Mantilla, Ricardo</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><creatorcontrib>Dawdy, David</creatorcontrib><creatorcontrib>Krajewski, Witold F.</creatorcontrib><title>Generalizing a nonlinear geophysical flood theory to medium-sized river networks</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The central hypothesis of a nonlinear geophysical flood theory postulates that, given space‐time rainfall intensity for a rainfall‐runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self‐similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400‐km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall‐runoff events. Scaling in peak discharges would hold in a non‐stationary climate due to global warming but its slope and intercept would change.</description><subject>Climate</subject><subject>Climate change</subject><subject>Differential equations</subject><subject>Drainage area</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flood peak</subject><subject>Floods</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Hydrology</subject><subject>Networks</subject><subject>Nonlinearity</subject><subject>Power law</subject><subject>Rainfall intensity</subject><subject>Rainfall-runoff relationships</subject><subject>River basins</subject><subject>River networks</subject><subject>Rivers</subject><subject>scaling theory</subject><subject>Self-similarity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxYMouFbf_ABBEH1w9OZ_8ihVR2FQEa2PIZPJtmlnkzWZtW4_vSlbivjQp3vh_s6Bew5CTwm8JkDNGwpg-gE4ERzuoRUxnHcaQN1Hq3ZpO1XyIXpU6zkAMGBkhb72IYXi5ngV0yl2OOU0xxRcwachb8_2NXo34_Wc84SXs5DLHi8Zb8IUd5uuxqsw4RJ_h4JTWC5zuaiP0YO1m2t4cjOP0I8P778ff-yGL_2n47dD54QUouOjcNprJQ0bR5goCE-UmgwzygARRnMamCCT1lKPegzKG0eco06LkWvv2RF6cfDdlvxrF-piN7H6MM8uhbyrVnGugLbvG_nyTpIo1jKiRJmGPvsPPc-7ktofVknCqVSgG_TqAPmSay1hbbclblzZWwL2ugf7bw8Nf37j6WrLcl1c8rHeamjrgQp5bUsP3GWcw_5OT9t_G6iUWjRRdxDFuoQ_tyJXLqxUTAn783Nv2Qnj78RA7An7C6VVo1I</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Gupta, Vijay K.</creator><creator>Mantilla, Ricardo</creator><creator>Troutman, Brent M.</creator><creator>Dawdy, David</creator><creator>Krajewski, Witold F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SM</scope><scope>7SU</scope><scope>C1K</scope><scope>7TV</scope><scope>7UA</scope></search><sort><creationdate>201006</creationdate><title>Generalizing a nonlinear geophysical flood theory to medium-sized river networks</title><author>Gupta, Vijay K. ; Mantilla, Ricardo ; Troutman, Brent M. ; Dawdy, David ; Krajewski, Witold F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5655-4b5a8c87693bb0d205c177d939790159842e351d8868b8be7c9a1aa2a85b48cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Differential equations</topic><topic>Drainage area</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flood peak</topic><topic>Floods</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Hydrology</topic><topic>Networks</topic><topic>Nonlinearity</topic><topic>Power law</topic><topic>Rainfall intensity</topic><topic>Rainfall-runoff relationships</topic><topic>River basins</topic><topic>River networks</topic><topic>Rivers</topic><topic>scaling theory</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Vijay K.</creatorcontrib><creatorcontrib>Mantilla, Ricardo</creatorcontrib><creatorcontrib>Troutman, Brent M.</creatorcontrib><creatorcontrib>Dawdy, David</creatorcontrib><creatorcontrib>Krajewski, Witold F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Vijay K.</au><au>Mantilla, Ricardo</au><au>Troutman, Brent M.</au><au>Dawdy, David</au><au>Krajewski, Witold F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing a nonlinear geophysical flood theory to medium-sized river networks</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2010-06</date><risdate>2010</risdate><volume>37</volume><issue>11</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The central hypothesis of a nonlinear geophysical flood theory postulates that, given space‐time rainfall intensity for a rainfall‐runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self‐similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400‐km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall‐runoff events. Scaling in peak discharges would hold in a non‐stationary climate due to global warming but its slope and intercept would change.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL041540</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2010-06, Vol.37 (11), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_744702800 |
source | Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library |
subjects | Climate Climate change Differential equations Drainage area Earth sciences Earth, ocean, space Exact sciences and technology Flood peak Floods Freshwater Geomorphology Geophysics Global warming Hydrology Networks Nonlinearity Power law Rainfall intensity Rainfall-runoff relationships River basins River networks Rivers scaling theory Self-similarity |
title | Generalizing a nonlinear geophysical flood theory to medium-sized river networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20a%20nonlinear%20geophysical%20flood%20theory%20to%20medium-sized%20river%20networks&rft.jtitle=Geophysical%20research%20letters&rft.au=Gupta,%20Vijay%20K.&rft.date=2010-06&rft.volume=37&rft.issue=11&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL041540&rft_dat=%3Cproquest_cross%3E744702800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=761426708&rft_id=info:pmid/&rfr_iscdi=true |