Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae
Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroa...
Gespeichert in:
Veröffentlicht in: | Clinical microbiology and infection 2010-05, Vol.16 (5), p.501-507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 5 |
container_start_page | 501 |
container_title | Clinical microbiology and infection |
container_volume | 16 |
creator | Moukhlis, R. Boyer, J. Lacube, P. Bolognini, J. Roux, P. Hennequin, C. |
description | Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations >250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci. |
doi_str_mv | 10.1111/j.1469-0691.2009.02833.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744678888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1198743X14633279</els_id><sourcerecordid>3310032141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEoqXwCsgSC1YJdpw48YIFDD9FGkSlgsTOunFuOg5OPNjJMMOD8Lw4nRFIbIo3vrbPOde6X5IQRjMW14s-Y4WQKRWSZTmlMqN5zXm2v5ec_3m4H2sm67Qq-Nez5FEIPaU057x4mJwxKSouRXGe_Fqb8ZsZb8jViPPg9CFMJpDeeLdDbUiYbQcDThu3h5_OIvEYTJhg1EgmR6YNErAWLQbiutvjm8ura3KDI5I5LLndPOrJuBEs0W7YWhxwnGC5IWYk16D1BrwbDjpGaPS4M8EAPk4edGADPjntF8mXd28_ry7T9af3H1av1qkuecVThK4CSSmClnWOvGhblnONDUDZCawogGCNLJu2QwYtbSiXZS3yqixq7NqGXyTPj7lb777PGCY1mKDRWhjRzUFVRSGqOq67lZzXkuVCROWzf5S9m30cQFCszGNzycslrz6qtHcheOzU1psB_EExqhbIqlcLS7WwVAtkdQtZ7aP16anB3AzY_jWeqEbBy6Pgh7F4-O9gtVp_XKrof330Yxz9zqBXQRuMzFvjUU-qdebuX_4GD_vO-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526279358</pqid></control><display><type>article</type><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</creator><creatorcontrib>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</creatorcontrib><description>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations >250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</description><identifier>ISSN: 1198-743X</identifier><identifier>EISSN: 1469-0691</identifier><identifier>DOI: 10.1111/j.1469-0691.2009.02833.x</identifier><identifier>PMID: 19673964</identifier><language>eng</language><publisher>Oxford, UK: Elsevier Ltd</publisher><subject>Antifungal Agents - pharmacology ; co-trimoxazole ; Competition ; Complementation ; Cotrimoxazole ; DHPS gene ; Dihydropteroate synthase ; Dihydropteroate Synthase - genetics ; Drug Resistance, Fungal ; Enzymes ; Folic acid ; Genes, Fungal ; Genetic Complementation Test - methods ; Humans ; Microbial Sensitivity Tests ; para-aminobenzoic acid ; Plasmids ; Pneumocystis ; Pneumocystis carinii - drug effects ; Pneumocystis carinii - enzymology ; Pneumocystis carinii - genetics ; Pneumocystis jiroveci ; pneumocystosis ; Pneumonia ; Pneumonia, Pneumocystis - microbiology ; Point mutation ; Prophylaxis ; resistance ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Single-nucleotide polymorphism ; Sulfamethoxazole ; Sulfamethoxazole - pharmacology ; Trimethoprim ; Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</subject><ispartof>Clinical microbiology and infection, 2010-05, Vol.16 (5), p.501-507</ispartof><rights>2010 European Society of Clinical Infectious Diseases</rights><rights>2009 The Authors. Journal Compilation © 2009 European Society of Clinical Microbiology and Infectious Diseases</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</citedby><cites>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-0691.2009.02833.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-0691.2009.02833.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19673964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moukhlis, R.</creatorcontrib><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Lacube, P.</creatorcontrib><creatorcontrib>Bolognini, J.</creatorcontrib><creatorcontrib>Roux, P.</creatorcontrib><creatorcontrib>Hennequin, C.</creatorcontrib><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><title>Clinical microbiology and infection</title><addtitle>Clin Microbiol Infect</addtitle><description>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations >250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</description><subject>Antifungal Agents - pharmacology</subject><subject>co-trimoxazole</subject><subject>Competition</subject><subject>Complementation</subject><subject>Cotrimoxazole</subject><subject>DHPS gene</subject><subject>Dihydropteroate synthase</subject><subject>Dihydropteroate Synthase - genetics</subject><subject>Drug Resistance, Fungal</subject><subject>Enzymes</subject><subject>Folic acid</subject><subject>Genes, Fungal</subject><subject>Genetic Complementation Test - methods</subject><subject>Humans</subject><subject>Microbial Sensitivity Tests</subject><subject>para-aminobenzoic acid</subject><subject>Plasmids</subject><subject>Pneumocystis</subject><subject>Pneumocystis carinii - drug effects</subject><subject>Pneumocystis carinii - enzymology</subject><subject>Pneumocystis carinii - genetics</subject><subject>Pneumocystis jiroveci</subject><subject>pneumocystosis</subject><subject>Pneumonia</subject><subject>Pneumonia, Pneumocystis - microbiology</subject><subject>Point mutation</subject><subject>Prophylaxis</subject><subject>resistance</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Sulfamethoxazole</subject><subject>Sulfamethoxazole - pharmacology</subject><subject>Trimethoprim</subject><subject>Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</subject><issn>1198-743X</issn><issn>1469-0691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEoqXwCsgSC1YJdpw48YIFDD9FGkSlgsTOunFuOg5OPNjJMMOD8Lw4nRFIbIo3vrbPOde6X5IQRjMW14s-Y4WQKRWSZTmlMqN5zXm2v5ec_3m4H2sm67Qq-Nez5FEIPaU057x4mJwxKSouRXGe_Fqb8ZsZb8jViPPg9CFMJpDeeLdDbUiYbQcDThu3h5_OIvEYTJhg1EgmR6YNErAWLQbiutvjm8ura3KDI5I5LLndPOrJuBEs0W7YWhxwnGC5IWYk16D1BrwbDjpGaPS4M8EAPk4edGADPjntF8mXd28_ry7T9af3H1av1qkuecVThK4CSSmClnWOvGhblnONDUDZCawogGCNLJu2QwYtbSiXZS3yqixq7NqGXyTPj7lb777PGCY1mKDRWhjRzUFVRSGqOq67lZzXkuVCROWzf5S9m30cQFCszGNzycslrz6qtHcheOzU1psB_EExqhbIqlcLS7WwVAtkdQtZ7aP16anB3AzY_jWeqEbBy6Pgh7F4-O9gtVp_XKrof330Yxz9zqBXQRuMzFvjUU-qdebuX_4GD_vO-w</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Moukhlis, R.</creator><creator>Boyer, J.</creator><creator>Lacube, P.</creator><creator>Bolognini, J.</creator><creator>Roux, P.</creator><creator>Hennequin, C.</creator><general>Elsevier Ltd</general><general>Blackwell Publishing Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201005</creationdate><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><author>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antifungal Agents - pharmacology</topic><topic>co-trimoxazole</topic><topic>Competition</topic><topic>Complementation</topic><topic>Cotrimoxazole</topic><topic>DHPS gene</topic><topic>Dihydropteroate synthase</topic><topic>Dihydropteroate Synthase - genetics</topic><topic>Drug Resistance, Fungal</topic><topic>Enzymes</topic><topic>Folic acid</topic><topic>Genes, Fungal</topic><topic>Genetic Complementation Test - methods</topic><topic>Humans</topic><topic>Microbial Sensitivity Tests</topic><topic>para-aminobenzoic acid</topic><topic>Plasmids</topic><topic>Pneumocystis</topic><topic>Pneumocystis carinii - drug effects</topic><topic>Pneumocystis carinii - enzymology</topic><topic>Pneumocystis carinii - genetics</topic><topic>Pneumocystis jiroveci</topic><topic>pneumocystosis</topic><topic>Pneumonia</topic><topic>Pneumonia, Pneumocystis - microbiology</topic><topic>Point mutation</topic><topic>Prophylaxis</topic><topic>resistance</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Sulfamethoxazole</topic><topic>Sulfamethoxazole - pharmacology</topic><topic>Trimethoprim</topic><topic>Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moukhlis, R.</creatorcontrib><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Lacube, P.</creatorcontrib><creatorcontrib>Bolognini, J.</creatorcontrib><creatorcontrib>Roux, P.</creatorcontrib><creatorcontrib>Hennequin, C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical microbiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moukhlis, R.</au><au>Boyer, J.</au><au>Lacube, P.</au><au>Bolognini, J.</au><au>Roux, P.</au><au>Hennequin, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</atitle><jtitle>Clinical microbiology and infection</jtitle><addtitle>Clin Microbiol Infect</addtitle><date>2010-05</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>501</spage><epage>507</epage><pages>501-507</pages><issn>1198-743X</issn><eissn>1469-0691</eissn><abstract>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations >250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</abstract><cop>Oxford, UK</cop><pub>Elsevier Ltd</pub><pmid>19673964</pmid><doi>10.1111/j.1469-0691.2009.02833.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1198-743X |
ispartof | Clinical microbiology and infection, 2010-05, Vol.16 (5), p.501-507 |
issn | 1198-743X 1469-0691 |
language | eng |
recordid | cdi_proquest_miscellaneous_744678888 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Antifungal Agents - pharmacology co-trimoxazole Competition Complementation Cotrimoxazole DHPS gene Dihydropteroate synthase Dihydropteroate Synthase - genetics Drug Resistance, Fungal Enzymes Folic acid Genes, Fungal Genetic Complementation Test - methods Humans Microbial Sensitivity Tests para-aminobenzoic acid Plasmids Pneumocystis Pneumocystis carinii - drug effects Pneumocystis carinii - enzymology Pneumocystis carinii - genetics Pneumocystis jiroveci pneumocystosis Pneumonia Pneumonia, Pneumocystis - microbiology Point mutation Prophylaxis resistance Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Single-nucleotide polymorphism Sulfamethoxazole Sulfamethoxazole - pharmacology Trimethoprim Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology |
title | Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Pneumocystis%20jiroveci%20sulfamethoxazole%20resistance%20to%20the%20alleles%20of%20the%20DHPS%20gene%20using%20functional%20complementation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Clinical%20microbiology%20and%20infection&rft.au=Moukhlis,%20R.&rft.date=2010-05&rft.volume=16&rft.issue=5&rft.spage=501&rft.epage=507&rft.pages=501-507&rft.issn=1198-743X&rft.eissn=1469-0691&rft_id=info:doi/10.1111/j.1469-0691.2009.02833.x&rft_dat=%3Cproquest_cross%3E3310032141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526279358&rft_id=info:pmid/19673964&rft_els_id=S1198743X14633279&rfr_iscdi=true |