Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae

Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical microbiology and infection 2010-05, Vol.16 (5), p.501-507
Hauptverfasser: Moukhlis, R., Boyer, J., Lacube, P., Bolognini, J., Roux, P., Hennequin, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 5
container_start_page 501
container_title Clinical microbiology and infection
container_volume 16
creator Moukhlis, R.
Boyer, J.
Lacube, P.
Bolognini, J.
Roux, P.
Hennequin, C.
description Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations >250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.
doi_str_mv 10.1111/j.1469-0691.2009.02833.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744678888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1198743X14633279</els_id><sourcerecordid>3310032141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEoqXwCsgSC1YJdpw48YIFDD9FGkSlgsTOunFuOg5OPNjJMMOD8Lw4nRFIbIo3vrbPOde6X5IQRjMW14s-Y4WQKRWSZTmlMqN5zXm2v5ec_3m4H2sm67Qq-Nez5FEIPaU057x4mJwxKSouRXGe_Fqb8ZsZb8jViPPg9CFMJpDeeLdDbUiYbQcDThu3h5_OIvEYTJhg1EgmR6YNErAWLQbiutvjm8ura3KDI5I5LLndPOrJuBEs0W7YWhxwnGC5IWYk16D1BrwbDjpGaPS4M8EAPk4edGADPjntF8mXd28_ry7T9af3H1av1qkuecVThK4CSSmClnWOvGhblnONDUDZCawogGCNLJu2QwYtbSiXZS3yqixq7NqGXyTPj7lb777PGCY1mKDRWhjRzUFVRSGqOq67lZzXkuVCROWzf5S9m30cQFCszGNzycslrz6qtHcheOzU1psB_EExqhbIqlcLS7WwVAtkdQtZ7aP16anB3AzY_jWeqEbBy6Pgh7F4-O9gtVp_XKrof330Yxz9zqBXQRuMzFvjUU-qdebuX_4GD_vO-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526279358</pqid></control><display><type>article</type><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</creator><creatorcontrib>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</creatorcontrib><description>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations &gt;250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</description><identifier>ISSN: 1198-743X</identifier><identifier>EISSN: 1469-0691</identifier><identifier>DOI: 10.1111/j.1469-0691.2009.02833.x</identifier><identifier>PMID: 19673964</identifier><language>eng</language><publisher>Oxford, UK: Elsevier Ltd</publisher><subject>Antifungal Agents - pharmacology ; co-trimoxazole ; Competition ; Complementation ; Cotrimoxazole ; DHPS gene ; Dihydropteroate synthase ; Dihydropteroate Synthase - genetics ; Drug Resistance, Fungal ; Enzymes ; Folic acid ; Genes, Fungal ; Genetic Complementation Test - methods ; Humans ; Microbial Sensitivity Tests ; para-aminobenzoic acid ; Plasmids ; Pneumocystis ; Pneumocystis carinii - drug effects ; Pneumocystis carinii - enzymology ; Pneumocystis carinii - genetics ; Pneumocystis jiroveci ; pneumocystosis ; Pneumonia ; Pneumonia, Pneumocystis - microbiology ; Point mutation ; Prophylaxis ; resistance ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Single-nucleotide polymorphism ; Sulfamethoxazole ; Sulfamethoxazole - pharmacology ; Trimethoprim ; Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</subject><ispartof>Clinical microbiology and infection, 2010-05, Vol.16 (5), p.501-507</ispartof><rights>2010 European Society of Clinical Infectious Diseases</rights><rights>2009 The Authors. Journal Compilation © 2009 European Society of Clinical Microbiology and Infectious Diseases</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</citedby><cites>FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-0691.2009.02833.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-0691.2009.02833.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19673964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moukhlis, R.</creatorcontrib><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Lacube, P.</creatorcontrib><creatorcontrib>Bolognini, J.</creatorcontrib><creatorcontrib>Roux, P.</creatorcontrib><creatorcontrib>Hennequin, C.</creatorcontrib><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><title>Clinical microbiology and infection</title><addtitle>Clin Microbiol Infect</addtitle><description>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations &gt;250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</description><subject>Antifungal Agents - pharmacology</subject><subject>co-trimoxazole</subject><subject>Competition</subject><subject>Complementation</subject><subject>Cotrimoxazole</subject><subject>DHPS gene</subject><subject>Dihydropteroate synthase</subject><subject>Dihydropteroate Synthase - genetics</subject><subject>Drug Resistance, Fungal</subject><subject>Enzymes</subject><subject>Folic acid</subject><subject>Genes, Fungal</subject><subject>Genetic Complementation Test - methods</subject><subject>Humans</subject><subject>Microbial Sensitivity Tests</subject><subject>para-aminobenzoic acid</subject><subject>Plasmids</subject><subject>Pneumocystis</subject><subject>Pneumocystis carinii - drug effects</subject><subject>Pneumocystis carinii - enzymology</subject><subject>Pneumocystis carinii - genetics</subject><subject>Pneumocystis jiroveci</subject><subject>pneumocystosis</subject><subject>Pneumonia</subject><subject>Pneumonia, Pneumocystis - microbiology</subject><subject>Point mutation</subject><subject>Prophylaxis</subject><subject>resistance</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Sulfamethoxazole</subject><subject>Sulfamethoxazole - pharmacology</subject><subject>Trimethoprim</subject><subject>Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</subject><issn>1198-743X</issn><issn>1469-0691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEoqXwCsgSC1YJdpw48YIFDD9FGkSlgsTOunFuOg5OPNjJMMOD8Lw4nRFIbIo3vrbPOde6X5IQRjMW14s-Y4WQKRWSZTmlMqN5zXm2v5ec_3m4H2sm67Qq-Nez5FEIPaU057x4mJwxKSouRXGe_Fqb8ZsZb8jViPPg9CFMJpDeeLdDbUiYbQcDThu3h5_OIvEYTJhg1EgmR6YNErAWLQbiutvjm8ura3KDI5I5LLndPOrJuBEs0W7YWhxwnGC5IWYk16D1BrwbDjpGaPS4M8EAPk4edGADPjntF8mXd28_ry7T9af3H1av1qkuecVThK4CSSmClnWOvGhblnONDUDZCawogGCNLJu2QwYtbSiXZS3yqixq7NqGXyTPj7lb777PGCY1mKDRWhjRzUFVRSGqOq67lZzXkuVCROWzf5S9m30cQFCszGNzycslrz6qtHcheOzU1psB_EExqhbIqlcLS7WwVAtkdQtZ7aP16anB3AzY_jWeqEbBy6Pgh7F4-O9gtVp_XKrof330Yxz9zqBXQRuMzFvjUU-qdebuX_4GD_vO-w</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Moukhlis, R.</creator><creator>Boyer, J.</creator><creator>Lacube, P.</creator><creator>Bolognini, J.</creator><creator>Roux, P.</creator><creator>Hennequin, C.</creator><general>Elsevier Ltd</general><general>Blackwell Publishing Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201005</creationdate><title>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</title><author>Moukhlis, R. ; Boyer, J. ; Lacube, P. ; Bolognini, J. ; Roux, P. ; Hennequin, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5373-eaf7a900eac982e34dd123cebaa5f6e70aa61b95bdfe1ad0b03958627548efdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antifungal Agents - pharmacology</topic><topic>co-trimoxazole</topic><topic>Competition</topic><topic>Complementation</topic><topic>Cotrimoxazole</topic><topic>DHPS gene</topic><topic>Dihydropteroate synthase</topic><topic>Dihydropteroate Synthase - genetics</topic><topic>Drug Resistance, Fungal</topic><topic>Enzymes</topic><topic>Folic acid</topic><topic>Genes, Fungal</topic><topic>Genetic Complementation Test - methods</topic><topic>Humans</topic><topic>Microbial Sensitivity Tests</topic><topic>para-aminobenzoic acid</topic><topic>Plasmids</topic><topic>Pneumocystis</topic><topic>Pneumocystis carinii - drug effects</topic><topic>Pneumocystis carinii - enzymology</topic><topic>Pneumocystis carinii - genetics</topic><topic>Pneumocystis jiroveci</topic><topic>pneumocystosis</topic><topic>Pneumonia</topic><topic>Pneumonia, Pneumocystis - microbiology</topic><topic>Point mutation</topic><topic>Prophylaxis</topic><topic>resistance</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Sulfamethoxazole</topic><topic>Sulfamethoxazole - pharmacology</topic><topic>Trimethoprim</topic><topic>Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moukhlis, R.</creatorcontrib><creatorcontrib>Boyer, J.</creatorcontrib><creatorcontrib>Lacube, P.</creatorcontrib><creatorcontrib>Bolognini, J.</creatorcontrib><creatorcontrib>Roux, P.</creatorcontrib><creatorcontrib>Hennequin, C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical microbiology and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moukhlis, R.</au><au>Boyer, J.</au><au>Lacube, P.</au><au>Bolognini, J.</au><au>Roux, P.</au><au>Hennequin, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae</atitle><jtitle>Clinical microbiology and infection</jtitle><addtitle>Clin Microbiol Infect</addtitle><date>2010-05</date><risdate>2010</risdate><volume>16</volume><issue>5</issue><spage>501</spage><epage>507</epage><pages>501-507</pages><issn>1198-743X</issn><eissn>1469-0691</eissn><abstract>Curative and prophylactic therapy for Pneumocystis jiroveci pneumonia relies mainly on co-trimoxazole, an association of trimethoprim and sulfamethoxazole (SMX). SMX inhibits the folic acid pathway through competition with para-aminobenzoic acid (pABA), one of the two substrates of the dihydropteroate synthase (DHPS), a key enzyme in de novo folic acid synthesis. The most frequent non-synonymous single nucleotide polymorphisms (SNPs) in P. jiroveci DHPS are seen at positions 165 and 171, the combination leading to four possible different genetic alleles. A number of reports correlate prophylaxis failure and mutation in the P. jiroveci DHPS but, because of the impossibility of reliably cultivating P. jiroveci, the link between DHPS mutation(s) and SMX susceptibility is not definitively proven. To circumvent this limitation, the yeast Saccharomyces cerevisiae was used as a model. The introduction of the P. jiroveci DHPS gene, with or without point mutations, directly amplified from a clinical specimen and cloned in a centromeric plasmid into a DHPS-deleted yeast strain, allowed a fully effective complementation. However, in the presence of SMX at concentrations &gt;250 mg/L, yeasts complemented with the double mutated allele showed a lower susceptibility compared with strains complemented with either a single mutated allele or wild-type alleles. These results confirm the need for prospective study of pneumocystosis, including systematic determination of the DHPS genotype, to clarify further the impact of mutations on clinical outcome. Additionally, the S. cerevisiae model proves to be usefulfor the study of still uninvestigated biological properties of P. jiroveci.</abstract><cop>Oxford, UK</cop><pub>Elsevier Ltd</pub><pmid>19673964</pmid><doi>10.1111/j.1469-0691.2009.02833.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1198-743X
ispartof Clinical microbiology and infection, 2010-05, Vol.16 (5), p.501-507
issn 1198-743X
1469-0691
language eng
recordid cdi_proquest_miscellaneous_744678888
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Antifungal Agents - pharmacology
co-trimoxazole
Competition
Complementation
Cotrimoxazole
DHPS gene
Dihydropteroate synthase
Dihydropteroate Synthase - genetics
Drug Resistance, Fungal
Enzymes
Folic acid
Genes, Fungal
Genetic Complementation Test - methods
Humans
Microbial Sensitivity Tests
para-aminobenzoic acid
Plasmids
Pneumocystis
Pneumocystis carinii - drug effects
Pneumocystis carinii - enzymology
Pneumocystis carinii - genetics
Pneumocystis jiroveci
pneumocystosis
Pneumonia
Pneumonia, Pneumocystis - microbiology
Point mutation
Prophylaxis
resistance
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Single-nucleotide polymorphism
Sulfamethoxazole
Sulfamethoxazole - pharmacology
Trimethoprim
Trimethoprim, Sulfamethoxazole Drug Combination - pharmacology
title Linking Pneumocystis jiroveci sulfamethoxazole resistance to the alleles of the DHPS gene using functional complementation in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Pneumocystis%20jiroveci%20sulfamethoxazole%20resistance%20to%20the%20alleles%20of%20the%20DHPS%20gene%20using%20functional%20complementation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Clinical%20microbiology%20and%20infection&rft.au=Moukhlis,%20R.&rft.date=2010-05&rft.volume=16&rft.issue=5&rft.spage=501&rft.epage=507&rft.pages=501-507&rft.issn=1198-743X&rft.eissn=1469-0691&rft_id=info:doi/10.1111/j.1469-0691.2009.02833.x&rft_dat=%3Cproquest_cross%3E3310032141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526279358&rft_id=info:pmid/19673964&rft_els_id=S1198743X14633279&rfr_iscdi=true