A numerical study on the elements of shape optimum design

This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 1992, Vol.9 (4), p.339-349
Hauptverfasser: Zhao, Zhiye, Adey, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 4
container_start_page 339
container_title Engineering analysis with boundary elements
container_volume 9
creator Zhao, Zhiye
Adey, R.A.
description This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads. Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.
doi_str_mv 10.1016/0955-7997(92)90019-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744653580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0955799792900194</els_id><sourcerecordid>744653580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEMOgnpYTbr52LkIpfgFBS8K3kKanbWR_TLZLfTfu2tLj57m8rzzzjyEXHJ2xxlX9wykTDSAvoHZLTDGIRFHZMIznSYc9OcxmRyQU3IW4_fApIypCYE5rfsKg3e2pLHr8y1tatqtkWKJFdZdpE1B49q2SJu281Vf0Ryj_6rPyUlhy4gX-zklH0-P74uXZPn2_LqYLxOXKtklK7SisJY5tFplWZZnSjtwLkdUmq-cQAm8SDk6JeRw5IprCRbkCCMApFNyvdvbhuanx9iZykeHZWlrbPpotBBKpjJjAyl2pAtNjAEL0wZf2bA1nJlRlBktmNGCgZn5E2XEELvaF9g4WCiCrZ2Ph6yUXGapHLCHHYbDsxuPwUTnsXaY-4CuM3nj_-_5Bby8e78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744653580</pqid></control><display><type>article</type><title>A numerical study on the elements of shape optimum design</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Zhiye ; Adey, R.A.</creator><creatorcontrib>Zhao, Zhiye ; Adey, R.A.</creatorcontrib><description>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads. Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/0955-7997(92)90019-4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary element method ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Integral equations ; Optimization ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Structural and continuum mechanics</subject><ispartof>Engineering analysis with boundary elements, 1992, Vol.9 (4), p.339-349</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</citedby><cites>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0955-7997(92)90019-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5515835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhiye</creatorcontrib><creatorcontrib>Adey, R.A.</creatorcontrib><title>A numerical study on the elements of shape optimum design</title><title>Engineering analysis with boundary elements</title><description>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads. Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</description><subject>Boundary element method</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integral equations</subject><subject>Optimization</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEMOgnpYTbr52LkIpfgFBS8K3kKanbWR_TLZLfTfu2tLj57m8rzzzjyEXHJ2xxlX9wykTDSAvoHZLTDGIRFHZMIznSYc9OcxmRyQU3IW4_fApIypCYE5rfsKg3e2pLHr8y1tatqtkWKJFdZdpE1B49q2SJu281Vf0Ryj_6rPyUlhy4gX-zklH0-P74uXZPn2_LqYLxOXKtklK7SisJY5tFplWZZnSjtwLkdUmq-cQAm8SDk6JeRw5IprCRbkCCMApFNyvdvbhuanx9iZykeHZWlrbPpotBBKpjJjAyl2pAtNjAEL0wZf2bA1nJlRlBktmNGCgZn5E2XEELvaF9g4WCiCrZ2Ph6yUXGapHLCHHYbDsxuPwUTnsXaY-4CuM3nj_-_5Bby8e78</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Zhao, Zhiye</creator><creator>Adey, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1992</creationdate><title>A numerical study on the elements of shape optimum design</title><author>Zhao, Zhiye ; Adey, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Boundary element method</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integral equations</topic><topic>Optimization</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhiye</creatorcontrib><creatorcontrib>Adey, R.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhiye</au><au>Adey, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study on the elements of shape optimum design</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>1992</date><risdate>1992</risdate><volume>9</volume><issue>4</issue><spage>339</spage><epage>349</epage><pages>339-349</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads. Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0955-7997(92)90019-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 1992, Vol.9 (4), p.339-349
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_744653580
source Elsevier ScienceDirect Journals Complete
subjects Boundary element method
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Integral equations
Optimization
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Stress analysis
Structural and continuum mechanics
title A numerical study on the elements of shape optimum design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20on%20the%20elements%20of%20shape%20optimum%20design&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Zhao,%20Zhiye&rft.date=1992&rft.volume=9&rft.issue=4&rft.spage=339&rft.epage=349&rft.pages=339-349&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/0955-7997(92)90019-4&rft_dat=%3Cproquest_cross%3E744653580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744653580&rft_id=info:pmid/&rft_els_id=0955799792900194&rfr_iscdi=true