A numerical study on the elements of shape optimum design
This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 1992, Vol.9 (4), p.339-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | 4 |
container_start_page | 339 |
container_title | Engineering analysis with boundary elements |
container_volume | 9 |
creator | Zhao, Zhiye Adey, R.A. |
description | This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads.
Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied. |
doi_str_mv | 10.1016/0955-7997(92)90019-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744653580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0955799792900194</els_id><sourcerecordid>744653580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEMOgnpYTbr52LkIpfgFBS8K3kKanbWR_TLZLfTfu2tLj57m8rzzzjyEXHJ2xxlX9wykTDSAvoHZLTDGIRFHZMIznSYc9OcxmRyQU3IW4_fApIypCYE5rfsKg3e2pLHr8y1tatqtkWKJFdZdpE1B49q2SJu281Vf0Ryj_6rPyUlhy4gX-zklH0-P74uXZPn2_LqYLxOXKtklK7SisJY5tFplWZZnSjtwLkdUmq-cQAm8SDk6JeRw5IprCRbkCCMApFNyvdvbhuanx9iZykeHZWlrbPpotBBKpjJjAyl2pAtNjAEL0wZf2bA1nJlRlBktmNGCgZn5E2XEELvaF9g4WCiCrZ2Ph6yUXGapHLCHHYbDsxuPwUTnsXaY-4CuM3nj_-_5Bby8e78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744653580</pqid></control><display><type>article</type><title>A numerical study on the elements of shape optimum design</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Zhiye ; Adey, R.A.</creator><creatorcontrib>Zhao, Zhiye ; Adey, R.A.</creatorcontrib><description>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads.
Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/0955-7997(92)90019-4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary element method ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Integral equations ; Optimization ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress analysis ; Structural and continuum mechanics</subject><ispartof>Engineering analysis with boundary elements, 1992, Vol.9 (4), p.339-349</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</citedby><cites>FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0955-7997(92)90019-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5515835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhiye</creatorcontrib><creatorcontrib>Adey, R.A.</creatorcontrib><title>A numerical study on the elements of shape optimum design</title><title>Engineering analysis with boundary elements</title><description>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads.
Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</description><subject>Boundary element method</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integral equations</subject><subject>Optimization</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress analysis</subject><subject>Structural and continuum mechanics</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEMOgnpYTbr52LkIpfgFBS8K3kKanbWR_TLZLfTfu2tLj57m8rzzzjyEXHJ2xxlX9wykTDSAvoHZLTDGIRFHZMIznSYc9OcxmRyQU3IW4_fApIypCYE5rfsKg3e2pLHr8y1tatqtkWKJFdZdpE1B49q2SJu281Vf0Ryj_6rPyUlhy4gX-zklH0-P74uXZPn2_LqYLxOXKtklK7SisJY5tFplWZZnSjtwLkdUmq-cQAm8SDk6JeRw5IprCRbkCCMApFNyvdvbhuanx9iZykeHZWlrbPpotBBKpjJjAyl2pAtNjAEL0wZf2bA1nJlRlBktmNGCgZn5E2XEELvaF9g4WCiCrZ2Ph6yUXGapHLCHHYbDsxuPwUTnsXaY-4CuM3nj_-_5Bby8e78</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Zhao, Zhiye</creator><creator>Adey, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1992</creationdate><title>A numerical study on the elements of shape optimum design</title><author>Zhao, Zhiye ; Adey, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bea4faa0cea76888d867c9ccdee671bc4e591f31ec645955b1759a957688e9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Boundary element method</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integral equations</topic><topic>Optimization</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress analysis</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhiye</creatorcontrib><creatorcontrib>Adey, R.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhiye</au><au>Adey, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study on the elements of shape optimum design</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>1992</date><risdate>1992</risdate><volume>9</volume><issue>4</issue><spage>339</spage><epage>349</epage><pages>339-349</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>This paper discusses the main elements of shape optimization. The material derivative of a stress function using the continuum approach is derived by introducing an adjoint problem, which is then transformed into shape design sensitivity by replacing the velocity field with the change of the design variables. The difficulty related with the appearance of the concentrated adjoint loads is discussed, with two proposals for the modelling of the adjoint problem. A numerical example is used to demonstrate the accuracy of the proposed formulation for different adjoint loads.
Two shape optimization examples are used to investigate the numerical characteristics of the optimization process. Two kinds of design boundary modelling are employed, namely the linear and cubic spline boundary representation. The difference of the final design shapes under different design variables and mesh distributions are also studied.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0955-7997(92)90019-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 1992, Vol.9 (4), p.339-349 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_744653580 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boundary element method Exact sciences and technology Fundamental areas of phenomenology (including applications) Integral equations Optimization Physics Solid mechanics Static elasticity (thermoelasticity...) Stress analysis Structural and continuum mechanics |
title | A numerical study on the elements of shape optimum design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20on%20the%20elements%20of%20shape%20optimum%20design&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Zhao,%20Zhiye&rft.date=1992&rft.volume=9&rft.issue=4&rft.spage=339&rft.epage=349&rft.pages=339-349&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/0955-7997(92)90019-4&rft_dat=%3Cproquest_cross%3E744653580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744653580&rft_id=info:pmid/&rft_els_id=0955799792900194&rfr_iscdi=true |