A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems

We describe an algorithm for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid method based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. Using an approximation to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 1992, Vol.9 (6), p.511-532
Hauptverfasser: Thompson, C.P., Leaf, G.K., Van Rosendale, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 6
container_start_page 511
container_title Applied numerical mathematics
container_volume 9
creator Thompson, C.P.
Leaf, G.K.
Van Rosendale, J.
description We describe an algorithm for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid method based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. Using an approximation to the local truncation error to control the refinement, we use a form of domain decomposition to introduce patches of finer grid wherever they are needed to ensure an accurate solution. This refinement strategy is completely local: regions that satisfy our tolerance are unmodified, except when they must be refined to maintain reasonable mesh ratios. This locality has the important consequence that boundary layers and other regions of sharp transition do not “steal” mesh points from surrounding regions of smooth flow, in contrast to moving mesh strategies where such “stealing” is inevitable. Our algorithm supports generalized simple domains, that is, any domain defined by horizontal and vertical lines. This generality is a natural consequence of our domain decomposition approach. We base our program on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. To ensure discrete mass conservation, we have introduced special grid transfer operators at grid interfaces in the multigrid algorithm. While these operators complicate the algorithm somewhat, our approach results in exact mass conservation and rapid convergence.
doi_str_mv 10.1016/0168-9274(92)90005-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744651831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016892749290005X</els_id><sourcerecordid>744651831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-4d2381a18668edbf69cdf58a75e0188a8c094644dc140d4402ea2969cd39da423</originalsourceid><addsrcrecordid>eNp9kM1q3DAURkVpoNOkb9CFFoW0CyeSLdvyJjCE5gdCumgK2Ykb6XpGrWxNJM3A7PIQecI8SeTMkGUXkhCc737cQ8hXzk44481pPrLoylZ878ofHWOsLu4_kBmXbVXUomEfyewd-UQ-x_h3YmrBZmQ7p2Y7wmA1OLelYGCV7AbpsHbJLoI1FNzCB5uWA-19oGmJ1I7aD6uAMdoHh_QWNhZD8Tv5fxgpPq4hWT_Gl6fnDThr3n4URkMHb9DRVfA5NcQjctCDi_hl_x6SPxc_786viptfl9fn85tCV02bCmHKSnLgsmkkmoe-6bTpawltjYxLCVKzTjRCGM0FM0KwEqHsJqrqDIiyOiTHu7m5-HGNManBRo3OwYh-HVUrRFNzWfFMih2pg48xYK9WwQ4QtoozNYlWk0U1WcyXehOt7nPs274AYrbYBxi1je_ZuuZd1bKMne0wzMtOxlTUFkeNxgbUSRlv_9_zChFrlU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744651831</pqid></control><display><type>article</type><title>A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems</title><source>Elsevier ScienceDirect Journals</source><creator>Thompson, C.P. ; Leaf, G.K. ; Van Rosendale, J.</creator><creatorcontrib>Thompson, C.P. ; Leaf, G.K. ; Van Rosendale, J.</creatorcontrib><description>We describe an algorithm for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid method based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. Using an approximation to the local truncation error to control the refinement, we use a form of domain decomposition to introduce patches of finer grid wherever they are needed to ensure an accurate solution. This refinement strategy is completely local: regions that satisfy our tolerance are unmodified, except when they must be refined to maintain reasonable mesh ratios. This locality has the important consequence that boundary layers and other regions of sharp transition do not “steal” mesh points from surrounding regions of smooth flow, in contrast to moving mesh strategies where such “stealing” is inevitable. Our algorithm supports generalized simple domains, that is, any domain defined by horizontal and vertical lines. This generality is a natural consequence of our domain decomposition approach. We base our program on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. To ensure discrete mass conservation, we have introduced special grid transfer operators at grid interfaces in the multigrid algorithm. While these operators complicate the algorithm somewhat, our approach results in exact mass conservation and rapid convergence.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/0168-9274(92)90005-X</identifier><identifier>CODEN: ANMAEL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; incompressible flow ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics</subject><ispartof>Applied numerical mathematics, 1992, Vol.9 (6), p.511-532</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-4d2381a18668edbf69cdf58a75e0188a8c094644dc140d4402ea2969cd39da423</citedby><cites>FETCH-LOGICAL-c367t-4d2381a18668edbf69cdf58a75e0188a8c094644dc140d4402ea2969cd39da423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0168-9274(92)90005-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,4011,27905,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5519370$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, C.P.</creatorcontrib><creatorcontrib>Leaf, G.K.</creatorcontrib><creatorcontrib>Van Rosendale, J.</creatorcontrib><title>A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems</title><title>Applied numerical mathematics</title><description>We describe an algorithm for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid method based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. Using an approximation to the local truncation error to control the refinement, we use a form of domain decomposition to introduce patches of finer grid wherever they are needed to ensure an accurate solution. This refinement strategy is completely local: regions that satisfy our tolerance are unmodified, except when they must be refined to maintain reasonable mesh ratios. This locality has the important consequence that boundary layers and other regions of sharp transition do not “steal” mesh points from surrounding regions of smooth flow, in contrast to moving mesh strategies where such “stealing” is inevitable. Our algorithm supports generalized simple domains, that is, any domain defined by horizontal and vertical lines. This generality is a natural consequence of our domain decomposition approach. We base our program on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. To ensure discrete mass conservation, we have introduced special grid transfer operators at grid interfaces in the multigrid algorithm. While these operators complicate the algorithm somewhat, our approach results in exact mass conservation and rapid convergence.</description><subject>Exact sciences and technology</subject><subject>incompressible flow</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAURkVpoNOkb9CFFoW0CyeSLdvyJjCE5gdCumgK2Ykb6XpGrWxNJM3A7PIQecI8SeTMkGUXkhCc737cQ8hXzk44481pPrLoylZ878ofHWOsLu4_kBmXbVXUomEfyewd-UQ-x_h3YmrBZmQ7p2Y7wmA1OLelYGCV7AbpsHbJLoI1FNzCB5uWA-19oGmJ1I7aD6uAMdoHh_QWNhZD8Tv5fxgpPq4hWT_Gl6fnDThr3n4URkMHb9DRVfA5NcQjctCDi_hl_x6SPxc_786viptfl9fn85tCV02bCmHKSnLgsmkkmoe-6bTpawltjYxLCVKzTjRCGM0FM0KwEqHsJqrqDIiyOiTHu7m5-HGNManBRo3OwYh-HVUrRFNzWfFMih2pg48xYK9WwQ4QtoozNYlWk0U1WcyXehOt7nPs274AYrbYBxi1je_ZuuZd1bKMne0wzMtOxlTUFkeNxgbUSRlv_9_zChFrlU8</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Thompson, C.P.</creator><creator>Leaf, G.K.</creator><creator>Van Rosendale, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1992</creationdate><title>A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems</title><author>Thompson, C.P. ; Leaf, G.K. ; Van Rosendale, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-4d2381a18668edbf69cdf58a75e0188a8c094644dc140d4402ea2969cd39da423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>incompressible flow</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, C.P.</creatorcontrib><creatorcontrib>Leaf, G.K.</creatorcontrib><creatorcontrib>Van Rosendale, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, C.P.</au><au>Leaf, G.K.</au><au>Van Rosendale, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems</atitle><jtitle>Applied numerical mathematics</jtitle><date>1992</date><risdate>1992</risdate><volume>9</volume><issue>6</issue><spage>511</spage><epage>532</epage><pages>511-532</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><coden>ANMAEL</coden><abstract>We describe an algorithm for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid method based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. Using an approximation to the local truncation error to control the refinement, we use a form of domain decomposition to introduce patches of finer grid wherever they are needed to ensure an accurate solution. This refinement strategy is completely local: regions that satisfy our tolerance are unmodified, except when they must be refined to maintain reasonable mesh ratios. This locality has the important consequence that boundary layers and other regions of sharp transition do not “steal” mesh points from surrounding regions of smooth flow, in contrast to moving mesh strategies where such “stealing” is inevitable. Our algorithm supports generalized simple domains, that is, any domain defined by horizontal and vertical lines. This generality is a natural consequence of our domain decomposition approach. We base our program on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. To ensure discrete mass conservation, we have introduced special grid transfer operators at grid interfaces in the multigrid algorithm. While these operators complicate the algorithm somewhat, our approach results in exact mass conservation and rapid convergence.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-9274(92)90005-X</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 1992, Vol.9 (6), p.511-532
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_744651831
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
incompressible flow
Mathematical methods in physics
Numerical approximation and analysis
Physics
title A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations—validation and model problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamically%20adaptive%20multigrid%20algorithm%20for%20the%20incompressible%20Navier-Stokes%20equations%E2%80%94validation%20and%20model%20problems&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Thompson,%20C.P.&rft.date=1992&rft.volume=9&rft.issue=6&rft.spage=511&rft.epage=532&rft.pages=511-532&rft.issn=0168-9274&rft.eissn=1873-5460&rft.coden=ANMAEL&rft_id=info:doi/10.1016/0168-9274(92)90005-X&rft_dat=%3Cproquest_cross%3E744651831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744651831&rft_id=info:pmid/&rft_els_id=016892749290005X&rfr_iscdi=true