Softening learning procedure for the layered feed-forward networks with multiple output nodes
When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our kn...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | |
container_start_page | 593 |
container_title | |
container_volume | ol. 1 |
creator | Tsaih, Ray R |
description | When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_744635319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26204119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-8d707aefc9965d34a7dd1fab43cc5795886104412c73c9d04aa2bc1481e548853</originalsourceid><addsrcrecordid>eNp9jktLAzEcxAMiqLXfISc9LWxem-QoxRcUelCPUtLkH7uabtY8KH57g3p2LjMMP4Y5QRe9VD0jnBJ6hpY5v_dNnAuq5Tl6fYq-wDRObziAST9hTtGCqwmwjwmXPeBgviCBwx7Ada08muTwBOUY00fGx7Hs8aGGMs4BcKxlrgVP0UG-RKfehAzLP1-gl7vb59VDt97cP65u1t1MGCmdcrKXBrzVehCOcSOdI97sOLNWSC2UGkh7TKiVzGrXc2PozhKuCAiulGALdP27265_VshlexizhRDMBLHmreR8YIIR3cirf0k60J6TBn4DOnVfwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26204119</pqid></control><display><type>conference_proceeding</type><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsaih, Ray R</creator><creatorcontrib>Tsaih, Ray R</creatorcontrib><description>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</description><identifier>ISBN: 0780314212</identifier><identifier>ISBN: 9780780314214</identifier><language>eng</language><ispartof>International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.ol. 1, p.593-596</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786</link.rule.ids></links><search><creatorcontrib>Tsaih, Ray R</creatorcontrib><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><title>International Joint Conference on Neural Networks, Nagoya, 1993</title><description>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</description><isbn>0780314212</isbn><isbn>9780780314214</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9jktLAzEcxAMiqLXfISc9LWxem-QoxRcUelCPUtLkH7uabtY8KH57g3p2LjMMP4Y5QRe9VD0jnBJ6hpY5v_dNnAuq5Tl6fYq-wDRObziAST9hTtGCqwmwjwmXPeBgviCBwx7Ada08muTwBOUY00fGx7Hs8aGGMs4BcKxlrgVP0UG-RKfehAzLP1-gl7vb59VDt97cP65u1t1MGCmdcrKXBrzVehCOcSOdI97sOLNWSC2UGkh7TKiVzGrXc2PozhKuCAiulGALdP27265_VshlexizhRDMBLHmreR8YIIR3cirf0k60J6TBn4DOnVfwQ</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Tsaih, Ray R</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19930101</creationdate><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><author>Tsaih, Ray R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-8d707aefc9965d34a7dd1fab43cc5795886104412c73c9d04aa2bc1481e548853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tsaih, Ray R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsaih, Ray R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Softening learning procedure for the layered feed-forward networks with multiple output nodes</atitle><btitle>International Joint Conference on Neural Networks, Nagoya, 1993</btitle><date>1993-01-01</date><risdate>1993</risdate><volume>ol. 1</volume><spage>593</spage><epage>596</epage><pages>593-596</pages><isbn>0780314212</isbn><isbn>9780780314214</isbn><abstract>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</abstract><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 0780314212 |
ispartof | International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.ol. 1, p.593-596 |
issn | |
language | eng |
recordid | cdi_proquest_miscellaneous_744635319 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | Softening learning procedure for the layered feed-forward networks with multiple output nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Softening%20learning%20procedure%20for%20the%20layered%20feed-forward%20networks%20with%20multiple%20output%20nodes&rft.btitle=International%20Joint%20Conference%20on%20Neural%20Networks,%20Nagoya,%201993&rft.au=Tsaih,%20Ray%20R&rft.date=1993-01-01&rft.volume=ol.%201&rft.spage=593&rft.epage=596&rft.pages=593-596&rft.isbn=0780314212&rft.isbn_list=9780780314214&rft_id=info:doi/&rft_dat=%3Cproquest%3E26204119%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26204119&rft_id=info:pmid/&rfr_iscdi=true |