Softening learning procedure for the layered feed-forward networks with multiple output nodes

When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tsaih, Ray R
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue
container_start_page 593
container_title
container_volume ol. 1
creator Tsaih, Ray R
description When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_744635319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26204119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-8d707aefc9965d34a7dd1fab43cc5795886104412c73c9d04aa2bc1481e548853</originalsourceid><addsrcrecordid>eNp9jktLAzEcxAMiqLXfISc9LWxem-QoxRcUelCPUtLkH7uabtY8KH57g3p2LjMMP4Y5QRe9VD0jnBJ6hpY5v_dNnAuq5Tl6fYq-wDRObziAST9hTtGCqwmwjwmXPeBgviCBwx7Ada08muTwBOUY00fGx7Hs8aGGMs4BcKxlrgVP0UG-RKfehAzLP1-gl7vb59VDt97cP65u1t1MGCmdcrKXBrzVehCOcSOdI97sOLNWSC2UGkh7TKiVzGrXc2PozhKuCAiulGALdP27265_VshlexizhRDMBLHmreR8YIIR3cirf0k60J6TBn4DOnVfwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26204119</pqid></control><display><type>conference_proceeding</type><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsaih, Ray R</creator><creatorcontrib>Tsaih, Ray R</creatorcontrib><description>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</description><identifier>ISBN: 0780314212</identifier><identifier>ISBN: 9780780314214</identifier><language>eng</language><ispartof>International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.ol. 1, p.593-596</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786</link.rule.ids></links><search><creatorcontrib>Tsaih, Ray R</creatorcontrib><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><title>International Joint Conference on Neural Networks, Nagoya, 1993</title><description>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</description><isbn>0780314212</isbn><isbn>9780780314214</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9jktLAzEcxAMiqLXfISc9LWxem-QoxRcUelCPUtLkH7uabtY8KH57g3p2LjMMP4Y5QRe9VD0jnBJ6hpY5v_dNnAuq5Tl6fYq-wDRObziAST9hTtGCqwmwjwmXPeBgviCBwx7Ada08muTwBOUY00fGx7Hs8aGGMs4BcKxlrgVP0UG-RKfehAzLP1-gl7vb59VDt97cP65u1t1MGCmdcrKXBrzVehCOcSOdI97sOLNWSC2UGkh7TKiVzGrXc2PozhKuCAiulGALdP27265_VshlexizhRDMBLHmreR8YIIR3cirf0k60J6TBn4DOnVfwQ</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Tsaih, Ray R</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19930101</creationdate><title>Softening learning procedure for the layered feed-forward networks with multiple output nodes</title><author>Tsaih, Ray R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-8d707aefc9965d34a7dd1fab43cc5795886104412c73c9d04aa2bc1481e548853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tsaih, Ray R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsaih, Ray R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Softening learning procedure for the layered feed-forward networks with multiple output nodes</atitle><btitle>International Joint Conference on Neural Networks, Nagoya, 1993</btitle><date>1993-01-01</date><risdate>1993</risdate><volume>ol. 1</volume><spage>593</spage><epage>596</epage><pages>593-596</pages><isbn>0780314212</isbn><isbn>9780780314214</isbn><abstract>When we encounter a new case (a new input/output relationship), we will first check if the knowledge we obtained so far could interpret it. If yes, there is no further learning effort involved. If no, we might cram this unfamiliar case; then meditate to reason out a way of integrating it into our knowledge. Here I present a learning algorithm, referred as the softening learning algorithm, that imitates this way of learning in human beings.</abstract><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISBN: 0780314212
ispartof International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.ol. 1, p.593-596
issn
language eng
recordid cdi_proquest_miscellaneous_744635319
source IEEE Electronic Library (IEL) Conference Proceedings
title Softening learning procedure for the layered feed-forward networks with multiple output nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Softening%20learning%20procedure%20for%20the%20layered%20feed-forward%20networks%20with%20multiple%20output%20nodes&rft.btitle=International%20Joint%20Conference%20on%20Neural%20Networks,%20Nagoya,%201993&rft.au=Tsaih,%20Ray%20R&rft.date=1993-01-01&rft.volume=ol.%201&rft.spage=593&rft.epage=596&rft.pages=593-596&rft.isbn=0780314212&rft.isbn_list=9780780314214&rft_id=info:doi/&rft_dat=%3Cproquest%3E26204119%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26204119&rft_id=info:pmid/&rfr_iscdi=true