Onset of Darcy–Bénard convection using a thermal non-equilibrium model

In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2002-05, Vol.45 (11), p.2221-2228
Hauptverfasser: Banu, Nurzahan, Rees, D.A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2228
container_issue 11
container_start_page 2221
container_title International journal of heat and mass transfer
container_volume 45
creator Banu, Nurzahan
Rees, D.A.S.
description In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis. We also present asymptotic solutions for both small and large values of H the inter-phase heat transfer coefficient, H, and compare this with the numerical solutions. For intermediate values of H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.
doi_str_mv 10.1016/S0017-9310(01)00331-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744632924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931001003313</els_id><sourcerecordid>744632924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBKRseC0CfsRxskJQnlKlLoC15ToTMErs1k4qdccdOAXn4CachPQh2MFmRiN9_8zoQ2if4FOCSXr2gDERcc4IPsbkBGPGSMw2UI9kIo8pyfJN1PtBttFOCK-LESdpD92PbIAmcmV0pbyef729X35-WOWLSDs7A90YZ6M2GPscqah5AV-rKrLOxjBtTWXG3rR1VLsCql20VaoqwN6699HTzfXj4C4ejm7vBxfDWCecNrHWiShwnhPFOQBPC4Vx92epGKc0EVyME56psWBZhsd5VxWIjJagM81EWQDro6PV3ol30xZCI2sTNFSVsuDaIEWSpIzmNOnIwz9JKlLCU5p1IF-B2rsQPJRy4k2t_FwSLBeK5VKxXPiTmMilYsm63MH6gApaVaVXVpvwG2YpE0zwjjtfcdB5mRnwMmgDVkNhfKdYFs78c-kbJOWQug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27615628</pqid></control><display><type>article</type><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><source>Elsevier ScienceDirect Journals</source><creator>Banu, Nurzahan ; Rees, D.A.S.</creator><creatorcontrib>Banu, Nurzahan ; Rees, D.A.S.</creatorcontrib><description>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis. We also present asymptotic solutions for both small and large values of H the inter-phase heat transfer coefficient, H, and compare this with the numerical solutions. For intermediate values of H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(01)00331-3</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic stability ; Buoyancy-driven instability ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer coefficients ; Hydrodynamic stability ; Mathematical models ; Nonhomogeneous flows ; Physics ; Porous materials ; Thermal effects</subject><ispartof>International journal of heat and mass transfer, 2002-05, Vol.45 (11), p.2221-2228</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</citedby><cites>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931001003313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13637375$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banu, Nurzahan</creatorcontrib><creatorcontrib>Rees, D.A.S.</creatorcontrib><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><title>International journal of heat and mass transfer</title><description>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis. We also present asymptotic solutions for both small and large values of H the inter-phase heat transfer coefficient, H, and compare this with the numerical solutions. For intermediate values of H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</description><subject>Asymptotic stability</subject><subject>Buoyancy-driven instability</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer coefficients</subject><subject>Hydrodynamic stability</subject><subject>Mathematical models</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Thermal effects</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBKRseC0CfsRxskJQnlKlLoC15ToTMErs1k4qdccdOAXn4CachPQh2MFmRiN9_8zoQ2if4FOCSXr2gDERcc4IPsbkBGPGSMw2UI9kIo8pyfJN1PtBttFOCK-LESdpD92PbIAmcmV0pbyef729X35-WOWLSDs7A90YZ6M2GPscqah5AV-rKrLOxjBtTWXG3rR1VLsCql20VaoqwN6699HTzfXj4C4ejm7vBxfDWCecNrHWiShwnhPFOQBPC4Vx92epGKc0EVyME56psWBZhsd5VxWIjJagM81EWQDro6PV3ol30xZCI2sTNFSVsuDaIEWSpIzmNOnIwz9JKlLCU5p1IF-B2rsQPJRy4k2t_FwSLBeK5VKxXPiTmMilYsm63MH6gApaVaVXVpvwG2YpE0zwjjtfcdB5mRnwMmgDVkNhfKdYFs78c-kbJOWQug</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Banu, Nurzahan</creator><creator>Rees, D.A.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>20020501</creationdate><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><author>Banu, Nurzahan ; Rees, D.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Asymptotic stability</topic><topic>Buoyancy-driven instability</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer coefficients</topic><topic>Hydrodynamic stability</topic><topic>Mathematical models</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banu, Nurzahan</creatorcontrib><creatorcontrib>Rees, D.A.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banu, Nurzahan</au><au>Rees, D.A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>45</volume><issue>11</issue><spage>2221</spage><epage>2228</epage><pages>2221-2228</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis. We also present asymptotic solutions for both small and large values of H the inter-phase heat transfer coefficient, H, and compare this with the numerical solutions. For intermediate values of H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(01)00331-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2002-05, Vol.45 (11), p.2221-2228
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_744632924
source Elsevier ScienceDirect Journals
subjects Asymptotic stability
Buoyancy-driven instability
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat transfer coefficients
Hydrodynamic stability
Mathematical models
Nonhomogeneous flows
Physics
Porous materials
Thermal effects
title Onset of Darcy–Bénard convection using a thermal non-equilibrium model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Onset%20of%20Darcy%E2%80%93B%C3%A9nard%20convection%20using%20a%20thermal%20non-equilibrium%20model&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Banu,%20Nurzahan&rft.date=2002-05-01&rft.volume=45&rft.issue=11&rft.spage=2221&rft.epage=2228&rft.pages=2221-2228&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(01)00331-3&rft_dat=%3Cproquest_cross%3E744632924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27615628&rft_id=info:pmid/&rft_els_id=S0017931001003313&rfr_iscdi=true