Onset of Darcy–Bénard convection using a thermal non-equilibrium model
In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general w...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2002-05, Vol.45 (11), p.2221-2228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2228 |
---|---|
container_issue | 11 |
container_start_page | 2221 |
container_title | International journal of heat and mass transfer |
container_volume | 45 |
creator | Banu, Nurzahan Rees, D.A.S. |
description | In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis.
We also present asymptotic solutions for both small and large values of
H the inter-phase heat transfer coefficient,
H, and compare this with the numerical solutions. For intermediate values of
H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π. |
doi_str_mv | 10.1016/S0017-9310(01)00331-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744632924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931001003313</els_id><sourcerecordid>744632924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EEqVwBKRseC0CfsRxskJQnlKlLoC15ToTMErs1k4qdccdOAXn4CachPQh2MFmRiN9_8zoQ2if4FOCSXr2gDERcc4IPsbkBGPGSMw2UI9kIo8pyfJN1PtBttFOCK-LESdpD92PbIAmcmV0pbyef729X35-WOWLSDs7A90YZ6M2GPscqah5AV-rKrLOxjBtTWXG3rR1VLsCql20VaoqwN6699HTzfXj4C4ejm7vBxfDWCecNrHWiShwnhPFOQBPC4Vx92epGKc0EVyME56psWBZhsd5VxWIjJagM81EWQDro6PV3ol30xZCI2sTNFSVsuDaIEWSpIzmNOnIwz9JKlLCU5p1IF-B2rsQPJRy4k2t_FwSLBeK5VKxXPiTmMilYsm63MH6gApaVaVXVpvwG2YpE0zwjjtfcdB5mRnwMmgDVkNhfKdYFs78c-kbJOWQug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27615628</pqid></control><display><type>article</type><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><source>Elsevier ScienceDirect Journals</source><creator>Banu, Nurzahan ; Rees, D.A.S.</creator><creatorcontrib>Banu, Nurzahan ; Rees, D.A.S.</creatorcontrib><description>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis.
We also present asymptotic solutions for both small and large values of
H the inter-phase heat transfer coefficient,
H, and compare this with the numerical solutions. For intermediate values of
H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(01)00331-3</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Asymptotic stability ; Buoyancy-driven instability ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat transfer coefficients ; Hydrodynamic stability ; Mathematical models ; Nonhomogeneous flows ; Physics ; Porous materials ; Thermal effects</subject><ispartof>International journal of heat and mass transfer, 2002-05, Vol.45 (11), p.2221-2228</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</citedby><cites>FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931001003313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13637375$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Banu, Nurzahan</creatorcontrib><creatorcontrib>Rees, D.A.S.</creatorcontrib><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><title>International journal of heat and mass transfer</title><description>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis.
We also present asymptotic solutions for both small and large values of
H the inter-phase heat transfer coefficient,
H, and compare this with the numerical solutions. For intermediate values of
H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</description><subject>Asymptotic stability</subject><subject>Buoyancy-driven instability</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer coefficients</subject><subject>Hydrodynamic stability</subject><subject>Mathematical models</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Porous materials</subject><subject>Thermal effects</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhi0EEqVwBKRseC0CfsRxskJQnlKlLoC15ToTMErs1k4qdccdOAXn4CachPQh2MFmRiN9_8zoQ2if4FOCSXr2gDERcc4IPsbkBGPGSMw2UI9kIo8pyfJN1PtBttFOCK-LESdpD92PbIAmcmV0pbyef729X35-WOWLSDs7A90YZ6M2GPscqah5AV-rKrLOxjBtTWXG3rR1VLsCql20VaoqwN6699HTzfXj4C4ejm7vBxfDWCecNrHWiShwnhPFOQBPC4Vx92epGKc0EVyME56psWBZhsd5VxWIjJagM81EWQDro6PV3ol30xZCI2sTNFSVsuDaIEWSpIzmNOnIwz9JKlLCU5p1IF-B2rsQPJRy4k2t_FwSLBeK5VKxXPiTmMilYsm63MH6gApaVaVXVpvwG2YpE0zwjjtfcdB5mRnwMmgDVkNhfKdYFs78c-kbJOWQug</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Banu, Nurzahan</creator><creator>Rees, D.A.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>20020501</creationdate><title>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</title><author>Banu, Nurzahan ; Rees, D.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-cc47d0991a55ee56da00879fa35224757b458ab73880b9388ae782fec8c37fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Asymptotic stability</topic><topic>Buoyancy-driven instability</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer coefficients</topic><topic>Hydrodynamic stability</topic><topic>Mathematical models</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Porous materials</topic><topic>Thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banu, Nurzahan</creatorcontrib><creatorcontrib>Rees, D.A.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banu, Nurzahan</au><au>Rees, D.A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Onset of Darcy–Bénard convection using a thermal non-equilibrium model</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>45</volume><issue>11</issue><spage>2221</spage><epage>2228</epage><pages>2221-2228</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>In this paper we use a two-field model for the separate modelling of the solid and fluid phase temperature fields in a fluid-saturated porous medium, and, in particular, we consider how the onset criterion for convection in a horizontal layer is affected by the adoption of such a model. In general we find that both the critical Rayleigh number and wavenumber are modified by the presence of thermal non-equilibrium effects. It is shown that the well-known result of Lapwood [Proc. Cambridge Philos. Soc. 44 (1948) 508] which corresponds to local thermal equilibrium (LTE), is recovered when taking the thermal equilibrium limit of the non-equilibrium analysis.
We also present asymptotic solutions for both small and large values of
H the inter-phase heat transfer coefficient,
H, and compare this with the numerical solutions. For intermediate values of
H we find that the critical wavenumber is always larger than π, the critical value for the LTE case. In some cases this critical wavenumber may be very large compared with π.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(01)00331-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2002-05, Vol.45 (11), p.2221-2228 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_744632924 |
source | Elsevier ScienceDirect Journals |
subjects | Asymptotic stability Buoyancy-driven instability Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) Heat transfer coefficients Hydrodynamic stability Mathematical models Nonhomogeneous flows Physics Porous materials Thermal effects |
title | Onset of Darcy–Bénard convection using a thermal non-equilibrium model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Onset%20of%20Darcy%E2%80%93B%C3%A9nard%20convection%20using%20a%20thermal%20non-equilibrium%20model&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Banu,%20Nurzahan&rft.date=2002-05-01&rft.volume=45&rft.issue=11&rft.spage=2221&rft.epage=2228&rft.pages=2221-2228&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(01)00331-3&rft_dat=%3Cproquest_cross%3E744632924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27615628&rft_id=info:pmid/&rft_els_id=S0017931001003313&rfr_iscdi=true |