Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions
The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature fie...
Gespeichert in:
Veröffentlicht in: | Experimental thermal and fluid science 2000-09, Vol.22 (3), p.123-131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 3 |
container_start_page | 123 |
container_title | Experimental thermal and fluid science |
container_volume | 22 |
creator | AbdulNour, R.S. Willenborg, K. McGrath, J.J. Foss, J.F. AbdulNour, B.S. |
description | The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature. |
doi_str_mv | 10.1016/S0894-1777(00)00018-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744630697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177700000182</els_id><sourcerecordid>744630697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</originalsourceid><addsrcrecordid>eNqFkc1u1TAQha0KJC6FR0DyoqLtInSc2LHDpqqq8iMVdQGsLccZq66S-GI7BR6Cd8a5tyq7shpp5ps5OnMIecPgHQPWnn0F1fGKSSlPAE4BgKmqPiAbpmRX1bVqn5HNI_KCvEzprkCqZrAhf76gSUvECeecaHA03yK1Yb5Hm32Y6S2aTHM0c3IYywCd89YXmLoQqaHb0cwm0p9mHOkd5vd0mX2ZTDTjtMVocrlNzTw89ncH3bj8on1Y5sHE36vc4Fe19Io8d2ZM-PqhHpLvH66-XX6qrm8-fr68uK5s03W5cq7DjnMUtljlwPpB9YpjU0tVCrZCKKGQSS4aND1jrgeh-nawQioYpGgOyfH-7jaGHwumrCefLI7FDIYlacl520DbyUK-fZKsZQsNl3UBxR60MaQU0elt9FOxpxnoNSa9i0mvGWgAvYtJr3tHDwImWTO68mrr079lURZaVbDzPYblLfceo05rDBYHH0tUegj-P0J_ASYxqSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27603472</pqid></control><display><type>article</type><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</creator><creatorcontrib>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</creatorcontrib><description>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/S0894-1777(00)00018-2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Boundary condition ; Boundary conditions ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat convection ; Heat flux ; Heat transfer ; Heat transfer coefficients ; Infrared thermography ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Isoflux ; Isothermal ; Jets ; Physics ; Thermal instruments, apparatus and techniques ; Thermocouples ; Thermography (imaging) ; Thermometry ; Turbulent flows, convection, and heat transfer ; Two-dimensional ; Velocity measurement ; Wall flow ; Wall jet</subject><ispartof>Experimental thermal and fluid science, 2000-09, Vol.22 (3), p.123-131</ispartof><rights>2000 Elsevier Science Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</citedby><cites>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-1777(00)00018-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1517768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AbdulNour, R.S.</creatorcontrib><creatorcontrib>Willenborg, K.</creatorcontrib><creatorcontrib>McGrath, J.J.</creatorcontrib><creatorcontrib>Foss, J.F.</creatorcontrib><creatorcontrib>AbdulNour, B.S.</creatorcontrib><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><title>Experimental thermal and fluid science</title><description>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</description><subject>Boundary condition</subject><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Infrared thermography</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Isoflux</subject><subject>Isothermal</subject><subject>Jets</subject><subject>Physics</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermocouples</subject><subject>Thermography (imaging)</subject><subject>Thermometry</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Two-dimensional</subject><subject>Velocity measurement</subject><subject>Wall flow</subject><subject>Wall jet</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQha0KJC6FR0DyoqLtInSc2LHDpqqq8iMVdQGsLccZq66S-GI7BR6Cd8a5tyq7shpp5ps5OnMIecPgHQPWnn0F1fGKSSlPAE4BgKmqPiAbpmRX1bVqn5HNI_KCvEzprkCqZrAhf76gSUvECeecaHA03yK1Yb5Hm32Y6S2aTHM0c3IYywCd89YXmLoQqaHb0cwm0p9mHOkd5vd0mX2ZTDTjtMVocrlNzTw89ncH3bj8on1Y5sHE36vc4Fe19Io8d2ZM-PqhHpLvH66-XX6qrm8-fr68uK5s03W5cq7DjnMUtljlwPpB9YpjU0tVCrZCKKGQSS4aND1jrgeh-nawQioYpGgOyfH-7jaGHwumrCefLI7FDIYlacl520DbyUK-fZKsZQsNl3UBxR60MaQU0elt9FOxpxnoNSa9i0mvGWgAvYtJr3tHDwImWTO68mrr079lURZaVbDzPYblLfceo05rDBYHH0tUegj-P0J_ASYxqSo</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>AbdulNour, R.S.</creator><creator>Willenborg, K.</creator><creator>McGrath, J.J.</creator><creator>Foss, J.F.</creator><creator>AbdulNour, B.S.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20000901</creationdate><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><author>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Boundary condition</topic><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Infrared thermography</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Isoflux</topic><topic>Isothermal</topic><topic>Jets</topic><topic>Physics</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermocouples</topic><topic>Thermography (imaging)</topic><topic>Thermometry</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Two-dimensional</topic><topic>Velocity measurement</topic><topic>Wall flow</topic><topic>Wall jet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AbdulNour, R.S.</creatorcontrib><creatorcontrib>Willenborg, K.</creatorcontrib><creatorcontrib>McGrath, J.J.</creatorcontrib><creatorcontrib>Foss, J.F.</creatorcontrib><creatorcontrib>AbdulNour, B.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AbdulNour, R.S.</au><au>Willenborg, K.</au><au>McGrath, J.J.</au><au>Foss, J.F.</au><au>AbdulNour, B.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>22</volume><issue>3</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0894-1777(00)00018-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1777 |
ispartof | Experimental thermal and fluid science, 2000-09, Vol.22 (3), p.123-131 |
issn | 0894-1777 1879-2286 |
language | eng |
recordid | cdi_proquest_miscellaneous_744630697 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boundary condition Boundary conditions Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Heat convection Heat flux Heat transfer Heat transfer coefficients Infrared thermography Instruments, apparatus, components and techniques common to several branches of physics and astronomy Isoflux Isothermal Jets Physics Thermal instruments, apparatus and techniques Thermocouples Thermography (imaging) Thermometry Turbulent flows, convection, and heat transfer Two-dimensional Velocity measurement Wall flow Wall jet |
title | Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurements%20of%20the%20convection%20heat%20transfer%20coefficient%20for%20a%20planar%20wall%20jet:%20uniform%20temperature%20and%20uniform%20heat%20flux%20boundary%20conditions&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=AbdulNour,%20R.S.&rft.date=2000-09-01&rft.volume=22&rft.issue=3&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/S0894-1777(00)00018-2&rft_dat=%3Cproquest_cross%3E744630697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27603472&rft_id=info:pmid/&rft_els_id=S0894177700000182&rfr_iscdi=true |