Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions

The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2000-09, Vol.22 (3), p.123-131
Hauptverfasser: AbdulNour, R.S., Willenborg, K., McGrath, J.J., Foss, J.F., AbdulNour, B.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 3
container_start_page 123
container_title Experimental thermal and fluid science
container_volume 22
creator AbdulNour, R.S.
Willenborg, K.
McGrath, J.J.
Foss, J.F.
AbdulNour, B.S.
description The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.
doi_str_mv 10.1016/S0894-1777(00)00018-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744630697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177700000182</els_id><sourcerecordid>744630697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</originalsourceid><addsrcrecordid>eNqFkc1u1TAQha0KJC6FR0DyoqLtInSc2LHDpqqq8iMVdQGsLccZq66S-GI7BR6Cd8a5tyq7shpp5ps5OnMIecPgHQPWnn0F1fGKSSlPAE4BgKmqPiAbpmRX1bVqn5HNI_KCvEzprkCqZrAhf76gSUvECeecaHA03yK1Yb5Hm32Y6S2aTHM0c3IYywCd89YXmLoQqaHb0cwm0p9mHOkd5vd0mX2ZTDTjtMVocrlNzTw89ncH3bj8on1Y5sHE36vc4Fe19Io8d2ZM-PqhHpLvH66-XX6qrm8-fr68uK5s03W5cq7DjnMUtljlwPpB9YpjU0tVCrZCKKGQSS4aND1jrgeh-nawQioYpGgOyfH-7jaGHwumrCefLI7FDIYlacl520DbyUK-fZKsZQsNl3UBxR60MaQU0elt9FOxpxnoNSa9i0mvGWgAvYtJr3tHDwImWTO68mrr079lURZaVbDzPYblLfceo05rDBYHH0tUegj-P0J_ASYxqSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27603472</pqid></control><display><type>article</type><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</creator><creatorcontrib>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</creatorcontrib><description>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/S0894-1777(00)00018-2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Boundary condition ; Boundary conditions ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Heat convection ; Heat flux ; Heat transfer ; Heat transfer coefficients ; Infrared thermography ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Isoflux ; Isothermal ; Jets ; Physics ; Thermal instruments, apparatus and techniques ; Thermocouples ; Thermography (imaging) ; Thermometry ; Turbulent flows, convection, and heat transfer ; Two-dimensional ; Velocity measurement ; Wall flow ; Wall jet</subject><ispartof>Experimental thermal and fluid science, 2000-09, Vol.22 (3), p.123-131</ispartof><rights>2000 Elsevier Science Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</citedby><cites>FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-1777(00)00018-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1517768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>AbdulNour, R.S.</creatorcontrib><creatorcontrib>Willenborg, K.</creatorcontrib><creatorcontrib>McGrath, J.J.</creatorcontrib><creatorcontrib>Foss, J.F.</creatorcontrib><creatorcontrib>AbdulNour, B.S.</creatorcontrib><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><title>Experimental thermal and fluid science</title><description>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</description><subject>Boundary condition</subject><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Infrared thermography</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Isoflux</subject><subject>Isothermal</subject><subject>Jets</subject><subject>Physics</subject><subject>Thermal instruments, apparatus and techniques</subject><subject>Thermocouples</subject><subject>Thermography (imaging)</subject><subject>Thermometry</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Two-dimensional</subject><subject>Velocity measurement</subject><subject>Wall flow</subject><subject>Wall jet</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQha0KJC6FR0DyoqLtInSc2LHDpqqq8iMVdQGsLccZq66S-GI7BR6Cd8a5tyq7shpp5ps5OnMIecPgHQPWnn0F1fGKSSlPAE4BgKmqPiAbpmRX1bVqn5HNI_KCvEzprkCqZrAhf76gSUvECeecaHA03yK1Yb5Hm32Y6S2aTHM0c3IYywCd89YXmLoQqaHb0cwm0p9mHOkd5vd0mX2ZTDTjtMVocrlNzTw89ncH3bj8on1Y5sHE36vc4Fe19Io8d2ZM-PqhHpLvH66-XX6qrm8-fr68uK5s03W5cq7DjnMUtljlwPpB9YpjU0tVCrZCKKGQSS4aND1jrgeh-nawQioYpGgOyfH-7jaGHwumrCefLI7FDIYlacl520DbyUK-fZKsZQsNl3UBxR60MaQU0elt9FOxpxnoNSa9i0mvGWgAvYtJr3tHDwImWTO68mrr079lURZaVbDzPYblLfceo05rDBYHH0tUegj-P0J_ASYxqSo</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>AbdulNour, R.S.</creator><creator>Willenborg, K.</creator><creator>McGrath, J.J.</creator><creator>Foss, J.F.</creator><creator>AbdulNour, B.S.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20000901</creationdate><title>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</title><author>AbdulNour, R.S. ; Willenborg, K. ; McGrath, J.J. ; Foss, J.F. ; AbdulNour, B.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ff9e944e5c018401bd8b84e327884ee655858e17453eab11fb058b6dc5780d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Boundary condition</topic><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Infrared thermography</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Isoflux</topic><topic>Isothermal</topic><topic>Jets</topic><topic>Physics</topic><topic>Thermal instruments, apparatus and techniques</topic><topic>Thermocouples</topic><topic>Thermography (imaging)</topic><topic>Thermometry</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Two-dimensional</topic><topic>Velocity measurement</topic><topic>Wall flow</topic><topic>Wall jet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AbdulNour, R.S.</creatorcontrib><creatorcontrib>Willenborg, K.</creatorcontrib><creatorcontrib>McGrath, J.J.</creatorcontrib><creatorcontrib>Foss, J.F.</creatorcontrib><creatorcontrib>AbdulNour, B.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AbdulNour, R.S.</au><au>Willenborg, K.</au><au>McGrath, J.J.</au><au>Foss, J.F.</au><au>AbdulNour, B.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2000-09-01</date><risdate>2000</risdate><volume>22</volume><issue>3</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>The local heat transfer coefficients for isothermal and uniform heat flux boundary conditions for a planar wall jet have been determined experimentally. Hot-wire anemometry surveys were used to quantify the velocity field in the wall jet. A micro-thermocouple was used to quantify the temperature field in the wall jet for the isothermal boundary condition. Infrared (IR) imaging was applied to measure the wall temperature for the uniform heat flux boundary condition. The difference in the local convection coefficients due to the different thermal boundary conditions was largest at the leading edge of the heated wall, becoming insignificant for non-dimensional streamwise locations exceeding approximately four slot widths away from the exit plane of the jet. The present results are for non-dimensional streamwise locations that are relevant to automotive windshield defogging/defrosting, which serves as the technological motivation for this study. Specifically, these results are for small non-dimensional streamwise locations compared to those in the published literature.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0894-1777(00)00018-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2000-09, Vol.22 (3), p.123-131
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_744630697
source Elsevier ScienceDirect Journals Complete
subjects Boundary condition
Boundary conditions
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Heat convection
Heat flux
Heat transfer
Heat transfer coefficients
Infrared thermography
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Isoflux
Isothermal
Jets
Physics
Thermal instruments, apparatus and techniques
Thermocouples
Thermography (imaging)
Thermometry
Turbulent flows, convection, and heat transfer
Two-dimensional
Velocity measurement
Wall flow
Wall jet
title Measurements of the convection heat transfer coefficient for a planar wall jet: uniform temperature and uniform heat flux boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurements%20of%20the%20convection%20heat%20transfer%20coefficient%20for%20a%20planar%20wall%20jet:%20uniform%20temperature%20and%20uniform%20heat%20flux%20boundary%20conditions&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=AbdulNour,%20R.S.&rft.date=2000-09-01&rft.volume=22&rft.issue=3&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/S0894-1777(00)00018-2&rft_dat=%3Cproquest_cross%3E744630697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27603472&rft_id=info:pmid/&rft_els_id=S0894177700000182&rfr_iscdi=true