Transient analysis of internally heated tubular components with exponential thermal loading and external convection

Duhamel's integral and unit step response derived for a hollow cylinder were used to derive an analytical solution for the transient temperature distribution across a tubular component internally subjected to exponential thermal loading with external convection to the surrounding environment. E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 1998-11, Vol.41 (22), p.3675-3678
Hauptverfasser: VEDULA, V. R, SEGALL, A. E, RANGARAJAN, S. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3678
container_issue 22
container_start_page 3675
container_title International journal of heat and mass transfer
container_volume 41
creator VEDULA, V. R
SEGALL, A. E
RANGARAJAN, S. K
description Duhamel's integral and unit step response derived for a hollow cylinder were used to derive an analytical solution for the transient temperature distribution across a tubular component internally subjected to exponential thermal loading with external convection to the surrounding environment. Excellent agreement was seen between the derived solution and a piecewise linear, finite element simulation. Because of the flexibility of the exponential boundary conditions used, the derived, closed-form solution has many practical research and industrial applications including the design process, as well as providing a first guess for an iterative, finite element analysis when materials nonlinearities are involved.
doi_str_mv 10.1016/S0017-9310(98)00031-3
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_744628445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744628445</sourcerecordid><originalsourceid>FETCH-LOGICAL-g251t-a80874faddd4769a9632210b4edef64ca0415ae1f656c576b73b66d5575aaa8c3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7-BCELQV1UkzaPdiniCwZcOK7LbZLORNJ0TFJ1_r2RGVwdPu53zuIidE7JDSVU3L4RQmXRVJRcNfU1IaSiRXWAZrSWTVHSujlEs3_lGJ3E-PGHhIkZissAPlrjEwYPbhttxGOPrU8mZHZbvDaQjMZp6iYHAatx2Iw--xF_27TG5meHFhxOaxOGnG4Ebf0qL-p83y3lov8yKtnRn6KjHlw0Z_uco_fHh-X9c7F4fXq5v1sUq5LTVEBNasl60FozKRpoRFWWlHTMaNMLpoAwysHQXnChuBSdrDohNOeSA0Ctqjm63O1uwvg5mZjawUZlnANvxim2kjFR1ozxbF7sTYgKXJ9_omxsN8EOELZtyQjjvKx-AYljby0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744628445</pqid></control><display><type>article</type><title>Transient analysis of internally heated tubular components with exponential thermal loading and external convection</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>VEDULA, V. R ; SEGALL, A. E ; RANGARAJAN, S. K</creator><creatorcontrib>VEDULA, V. R ; SEGALL, A. E ; RANGARAJAN, S. K</creatorcontrib><description>Duhamel's integral and unit step response derived for a hollow cylinder were used to derive an analytical solution for the transient temperature distribution across a tubular component internally subjected to exponential thermal loading with external convection to the surrounding environment. Excellent agreement was seen between the derived solution and a piecewise linear, finite element simulation. Because of the flexibility of the exponential boundary conditions used, the derived, closed-form solution has many practical research and industrial applications including the design process, as well as providing a first guess for an iterative, finite element analysis when materials nonlinearities are involved.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(98)00031-3</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier</publisher><subject>Applied sciences ; Boundary conditions ; Computer simulation ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite element method ; Heat convection ; Heat transfer ; Integral equations ; Piecewise linear techniques ; Temperature distribution ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 1998-11, Vol.41 (22), p.3675-3678</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2404552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VEDULA, V. R</creatorcontrib><creatorcontrib>SEGALL, A. E</creatorcontrib><creatorcontrib>RANGARAJAN, S. K</creatorcontrib><title>Transient analysis of internally heated tubular components with exponential thermal loading and external convection</title><title>International journal of heat and mass transfer</title><description>Duhamel's integral and unit step response derived for a hollow cylinder were used to derive an analytical solution for the transient temperature distribution across a tubular component internally subjected to exponential thermal loading with external convection to the surrounding environment. Excellent agreement was seen between the derived solution and a piecewise linear, finite element simulation. Because of the flexibility of the exponential boundary conditions used, the derived, closed-form solution has many practical research and industrial applications including the design process, as well as providing a first guess for an iterative, finite element analysis when materials nonlinearities are involved.</description><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Heat convection</subject><subject>Heat transfer</subject><subject>Integral equations</subject><subject>Piecewise linear techniques</subject><subject>Temperature distribution</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOI7-BCELQV1UkzaPdiniCwZcOK7LbZLORNJ0TFJ1_r2RGVwdPu53zuIidE7JDSVU3L4RQmXRVJRcNfU1IaSiRXWAZrSWTVHSujlEs3_lGJ3E-PGHhIkZissAPlrjEwYPbhttxGOPrU8mZHZbvDaQjMZp6iYHAatx2Iw--xF_27TG5meHFhxOaxOGnG4Ebf0qL-p83y3lov8yKtnRn6KjHlw0Z_uco_fHh-X9c7F4fXq5v1sUq5LTVEBNasl60FozKRpoRFWWlHTMaNMLpoAwysHQXnChuBSdrDohNOeSA0Ctqjm63O1uwvg5mZjawUZlnANvxim2kjFR1ozxbF7sTYgKXJ9_omxsN8EOELZtyQjjvKx-AYljby0</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>VEDULA, V. R</creator><creator>SEGALL, A. E</creator><creator>RANGARAJAN, S. K</creator><general>Elsevier</general><scope>IQODW</scope><scope>7TC</scope></search><sort><creationdate>19981101</creationdate><title>Transient analysis of internally heated tubular components with exponential thermal loading and external convection</title><author>VEDULA, V. R ; SEGALL, A. E ; RANGARAJAN, S. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g251t-a80874faddd4769a9632210b4edef64ca0415ae1f656c576b73b66d5575aaa8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Heat convection</topic><topic>Heat transfer</topic><topic>Integral equations</topic><topic>Piecewise linear techniques</topic><topic>Temperature distribution</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VEDULA, V. R</creatorcontrib><creatorcontrib>SEGALL, A. E</creatorcontrib><creatorcontrib>RANGARAJAN, S. K</creatorcontrib><collection>Pascal-Francis</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VEDULA, V. R</au><au>SEGALL, A. E</au><au>RANGARAJAN, S. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient analysis of internally heated tubular components with exponential thermal loading and external convection</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>41</volume><issue>22</issue><spage>3675</spage><epage>3678</epage><pages>3675-3678</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Duhamel's integral and unit step response derived for a hollow cylinder were used to derive an analytical solution for the transient temperature distribution across a tubular component internally subjected to exponential thermal loading with external convection to the surrounding environment. Excellent agreement was seen between the derived solution and a piecewise linear, finite element simulation. Because of the flexibility of the exponential boundary conditions used, the derived, closed-form solution has many practical research and industrial applications including the design process, as well as providing a first guess for an iterative, finite element analysis when materials nonlinearities are involved.</abstract><cop>Oxford</cop><pub>Elsevier</pub><doi>10.1016/S0017-9310(98)00031-3</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 1998-11, Vol.41 (22), p.3675-3678
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_744628445
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Boundary conditions
Computer simulation
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite element method
Heat convection
Heat transfer
Integral equations
Piecewise linear techniques
Temperature distribution
Theoretical studies. Data and constants. Metering
title Transient analysis of internally heated tubular components with exponential thermal loading and external convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20analysis%20of%20internally%20heated%20tubular%20components%20with%20exponential%20thermal%20loading%20and%20external%20convection&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=VEDULA,%20V.%20R&rft.date=1998-11-01&rft.volume=41&rft.issue=22&rft.spage=3675&rft.epage=3678&rft.pages=3675-3678&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(98)00031-3&rft_dat=%3Cproquest_pasca%3E744628445%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744628445&rft_id=info:pmid/&rfr_iscdi=true