Population-level ecological effect assessment: estimating the effect of toxic chemicals on density-dependent populations
We examined the relationship between individual-level and population-level effects of toxic chemicals, employing the equilibrium population size as an index of population-level effects. We first analyzed two-stage matrix models considering four life-history types and four density-dependent models, a...
Gespeichert in:
Veröffentlicht in: | Ecological research 2009-09, Vol.24 (5), p.945-954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examined the relationship between individual-level and population-level effects of toxic chemicals, employing the equilibrium population size as an index of population-level effects. We first analyzed two-stage matrix models considering four life-history types and four density-dependent models, and then we analyzed ecotoxicological and life-history data of the fathead minnow (
Pimephales promelas
) and brook trout (
Salvelinus fontinalis
) as real examples. Our elasticity analysis showed that toxic impacts on density-dependent populations depended largely on the differences in density-dependence and in life histories of the organisms. In particular, the importance of adult survivability was considerably increased in iteroparous organisms with density-dependent juvenile survivability or fertility. Our results also suggested that population-level effects, as indicated by the percentage reduction in equilibrium population size, were often greater than the percentage reductions in vital rates of individuals. Our analysis indicates that assessing population-level risk and developing a risk-reduction strategy without considering density-dependence can be risky. |
---|---|
ISSN: | 0912-3814 1440-1703 |
DOI: | 10.1007/s11284-008-0561-6 |