fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment
There are two well-known methods to assess bone age, the Greulich-Pyle method and the Tanner-Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2010-06, Vol.48 (6), p.579-588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 6 |
container_start_page | 579 |
container_title | Medical & biological engineering & computing |
container_volume | 48 |
creator | Hsieh, Chi-Wen Liu, Tzu-Chiang Jong, Tai-Lang Tiu, Chui-Mei |
description | There are two well-known methods to assess bone age, the Greulich-Pyle method and the Tanner-Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated to quantitatively describe the maturity. The study extracted the morphology of carpal bones and applied the fuzzy theory with principle component analysis to estimate the maturity of skeleton. Five geometric features of the carpals were extracted including the bone area, the area ratio, and the bone contour of the carpals. In order to analyze these features, the principle component analysis and the statistical correlation combined with three different types of procedure were used to construct a growth model of carpals. Eventually, the results of the three types of procedure with fuzzy rules can construct a bone-age assessment system to identify the maturity of children. The study shows that the proposed model based on fuzzy rule has an accuracy rate above 89% in Type-I and II, and above 87% in Type-III within a tolerance of 1.5 years. |
doi_str_mv | 10.1007/s11517-010-0609-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744619186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057653541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c3135c37b991f7c41f3ef2bc709419be3cb98520c7e5066e2f8ad50fc22df5b13</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMozp3RH-BGg5tZVc_JR9MsZfALBlzorEOaJtcObVOTlqHz682lo4ILXeVAnvc9cB5CXiC8QQD1NiNKVBUgVFCDrrZH5IBKYAVCiMfkACjKD2JzRs5zvgVgKJl4Ss4YCJCMNQfiwnp_v1Wtzb6jxxTvlu90jJ0f6F1fxjn1k-vnwVMXxzlOflqoneyw5T7T7Afvlj5ONMREnU2zHWhboMoePbU5-5zHknhGngQ7ZP_84b0gNx_ef7v6VF1_-fj56t115QSrl8px5NJx1WqNQTmBgfvAWqdAC9St567VjWTglJdQ156FxnYSgmOsC7JFfkEu9945xR-rz4sZ--z8MNjJxzUbJUSNGpv6_yTnTCvJZSFf_0XexjWVC2TDlSyFWukC4Q65FHNOPphyt9GmzSCYkymzmzLFlDmZMlvJvHwoXtvRd78Tv9QUgO1APkk4-vRn879aX-2hYKOxx9Rnc_OVAXLARgrQnP8EfuOonw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>375446979</pqid></control><display><type>article</type><title>fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Hsieh, Chi-Wen ; Liu, Tzu-Chiang ; Jong, Tai-Lang ; Tiu, Chui-Mei</creator><creatorcontrib>Hsieh, Chi-Wen ; Liu, Tzu-Chiang ; Jong, Tai-Lang ; Tiu, Chui-Mei</creatorcontrib><description>There are two well-known methods to assess bone age, the Greulich-Pyle method and the Tanner-Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated to quantitatively describe the maturity. The study extracted the morphology of carpal bones and applied the fuzzy theory with principle component analysis to estimate the maturity of skeleton. Five geometric features of the carpals were extracted including the bone area, the area ratio, and the bone contour of the carpals. In order to analyze these features, the principle component analysis and the statistical correlation combined with three different types of procedure were used to construct a growth model of carpals. Eventually, the results of the three types of procedure with fuzzy rules can construct a bone-age assessment system to identify the maturity of children. The study shows that the proposed model based on fuzzy rule has an accuracy rate above 89% in Type-I and II, and above 87% in Type-III within a tolerance of 1.5 years.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-010-0609-y</identifier><identifier>PMID: 20405228</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Age ; Age Determination by Skeleton - methods ; Algorithms ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Bone age assessment ; Bones ; Carpal Bones - diagnostic imaging ; Carpal Bones - growth & development ; Carpal growth modeling ; Child ; Child, Preschool ; Computer Applications ; Feature capture ; Female ; Fuzzy Logic ; Growth models ; Human Physiology ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Infant ; Male ; Methods ; Morphology ; Neural networks ; Original Article ; Pediatrics ; Physical growth ; Principal Component Analysis ; Principal components analysis ; Principle component analysis ; Radiology ; Sex Characteristics ; Statistical analysis ; Studies</subject><ispartof>Medical & biological engineering & computing, 2010-06, Vol.48 (6), p.579-588</ispartof><rights>International Federation for Medical and Biological Engineering 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c3135c37b991f7c41f3ef2bc709419be3cb98520c7e5066e2f8ad50fc22df5b13</citedby><cites>FETCH-LOGICAL-c426t-c3135c37b991f7c41f3ef2bc709419be3cb98520c7e5066e2f8ad50fc22df5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-010-0609-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-010-0609-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20405228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Chi-Wen</creatorcontrib><creatorcontrib>Liu, Tzu-Chiang</creatorcontrib><creatorcontrib>Jong, Tai-Lang</creatorcontrib><creatorcontrib>Tiu, Chui-Mei</creatorcontrib><title>fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>There are two well-known methods to assess bone age, the Greulich-Pyle method and the Tanner-Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated to quantitatively describe the maturity. The study extracted the morphology of carpal bones and applied the fuzzy theory with principle component analysis to estimate the maturity of skeleton. Five geometric features of the carpals were extracted including the bone area, the area ratio, and the bone contour of the carpals. In order to analyze these features, the principle component analysis and the statistical correlation combined with three different types of procedure were used to construct a growth model of carpals. Eventually, the results of the three types of procedure with fuzzy rules can construct a bone-age assessment system to identify the maturity of children. The study shows that the proposed model based on fuzzy rule has an accuracy rate above 89% in Type-I and II, and above 87% in Type-III within a tolerance of 1.5 years.</description><subject>Age</subject><subject>Age Determination by Skeleton - methods</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Bone age assessment</subject><subject>Bones</subject><subject>Carpal Bones - diagnostic imaging</subject><subject>Carpal Bones - growth & development</subject><subject>Carpal growth modeling</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computer Applications</subject><subject>Feature capture</subject><subject>Female</subject><subject>Fuzzy Logic</subject><subject>Growth models</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Infant</subject><subject>Male</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pediatrics</subject><subject>Physical growth</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Principle component analysis</subject><subject>Radiology</subject><subject>Sex Characteristics</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU2L1TAUhoMozp3RH-BGg5tZVc_JR9MsZfALBlzorEOaJtcObVOTlqHz682lo4ILXeVAnvc9cB5CXiC8QQD1NiNKVBUgVFCDrrZH5IBKYAVCiMfkACjKD2JzRs5zvgVgKJl4Ss4YCJCMNQfiwnp_v1Wtzb6jxxTvlu90jJ0f6F1fxjn1k-vnwVMXxzlOflqoneyw5T7T7Afvlj5ONMREnU2zHWhboMoePbU5-5zHknhGngQ7ZP_84b0gNx_ef7v6VF1_-fj56t115QSrl8px5NJx1WqNQTmBgfvAWqdAC9St567VjWTglJdQ156FxnYSgmOsC7JFfkEu9945xR-rz4sZ--z8MNjJxzUbJUSNGpv6_yTnTCvJZSFf_0XexjWVC2TDlSyFWukC4Q65FHNOPphyt9GmzSCYkymzmzLFlDmZMlvJvHwoXtvRd78Tv9QUgO1APkk4-vRn879aX-2hYKOxx9Rnc_OVAXLARgrQnP8EfuOonw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Hsieh, Chi-Wen</creator><creator>Liu, Tzu-Chiang</creator><creator>Jong, Tai-Lang</creator><creator>Tiu, Chui-Mei</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope></search><sort><creationdate>20100601</creationdate><title>fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment</title><author>Hsieh, Chi-Wen ; Liu, Tzu-Chiang ; Jong, Tai-Lang ; Tiu, Chui-Mei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c3135c37b991f7c41f3ef2bc709419be3cb98520c7e5066e2f8ad50fc22df5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age</topic><topic>Age Determination by Skeleton - methods</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Bone age assessment</topic><topic>Bones</topic><topic>Carpal Bones - diagnostic imaging</topic><topic>Carpal Bones - growth & development</topic><topic>Carpal growth modeling</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computer Applications</topic><topic>Feature capture</topic><topic>Female</topic><topic>Fuzzy Logic</topic><topic>Growth models</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Infant</topic><topic>Male</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pediatrics</topic><topic>Physical growth</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Principle component analysis</topic><topic>Radiology</topic><topic>Sex Characteristics</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Chi-Wen</creatorcontrib><creatorcontrib>Liu, Tzu-Chiang</creatorcontrib><creatorcontrib>Jong, Tai-Lang</creatorcontrib><creatorcontrib>Tiu, Chui-Mei</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Chi-Wen</au><au>Liu, Tzu-Chiang</au><au>Jong, Tai-Lang</au><au>Tiu, Chui-Mei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>48</volume><issue>6</issue><spage>579</spage><epage>588</epage><pages>579-588</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>There are two well-known methods to assess bone age, the Greulich-Pyle method and the Tanner-Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated to quantitatively describe the maturity. The study extracted the morphology of carpal bones and applied the fuzzy theory with principle component analysis to estimate the maturity of skeleton. Five geometric features of the carpals were extracted including the bone area, the area ratio, and the bone contour of the carpals. In order to analyze these features, the principle component analysis and the statistical correlation combined with three different types of procedure were used to construct a growth model of carpals. Eventually, the results of the three types of procedure with fuzzy rules can construct a bone-age assessment system to identify the maturity of children. The study shows that the proposed model based on fuzzy rule has an accuracy rate above 89% in Type-I and II, and above 87% in Type-III within a tolerance of 1.5 years.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20405228</pmid><doi>10.1007/s11517-010-0609-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2010-06, Vol.48 (6), p.579-588 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_744619186 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Age Age Determination by Skeleton - methods Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Bone age assessment Bones Carpal Bones - diagnostic imaging Carpal Bones - growth & development Carpal growth modeling Child Child, Preschool Computer Applications Feature capture Female Fuzzy Logic Growth models Human Physiology Humans Image Interpretation, Computer-Assisted - methods Imaging Infant Male Methods Morphology Neural networks Original Article Pediatrics Physical growth Principal Component Analysis Principal components analysis Principle component analysis Radiology Sex Characteristics Statistical analysis Studies |
title | fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=fuzzy-based%20growth%20model%20with%20principle%20component%20analysis%20selection%20for%20carpal%20bone-age%20assessment&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Hsieh,%20Chi-Wen&rft.date=2010-06-01&rft.volume=48&rft.issue=6&rft.spage=579&rft.epage=588&rft.pages=579-588&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-010-0609-y&rft_dat=%3Cproquest_cross%3E2057653541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=375446979&rft_id=info:pmid/20405228&rfr_iscdi=true |