Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model

This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteorology and atmospheric physics 2010-06, Vol.107 (1-2), p.51-64
Hauptverfasser: Nehrkorn, Thomas, Eluszkiewicz, Janusz, Wofsy, Steven C, Lin, John C, Gerbig, Christoph, Longo, Marcos, Freitas, Saulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1-2
container_start_page 51
container_title Meteorology and atmospheric physics
container_volume 107
creator Nehrkorn, Thomas
Eluszkiewicz, Janusz
Wofsy, Steven C
Lin, John C
Gerbig, Christoph
Longo, Marcos
Freitas, Saulo
description This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO₂ measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.
doi_str_mv 10.1007/s00703-010-0068-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744617319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730071178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-86d8c0438de0a53de580e38a8e53338ed584ffdf790cd984fb0cdcd562da513b3</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxhdR8Kz-AT65CNL6EM3sZLPZRzmsFg4K7RUfQ5rM3m3Z25zJnq3_vXNsUfChL5kJ-X0fk_mK4i3ITyBl8znzIVFIkEJKbcTDs2IBCrWopa6fFwsJTSOatoGXxauc7yTfdQWLYruMh_1AobwnN20plYkyueS3pRtD2cVE3uWpHzciT9Fvj70vp35Hoh9_UZpYObhNcuOmd2M5cZP3MU3l2Y-rc3G9vlitP5a7GGh4Xbzo3JDpzWM9KW7Ov66X38Xq8tvF8stKeIVqEkYH46VCE0i6GgPVRhIaZ6hGREOhNqrrQte00oeW-1uuPtS6Cq4GvMWT4nT23af480B5srs-exoGN1I8ZNsopaFBaJk8e5JkipcK0BhG3_-H3sVDGvkfFpVuqwoVMgQz5FPMOVFn96nfufTbgrTHkOwckuWQ7DEk-8CaD4_GLns3dLw_3-e_wqoy2IJWzFUzl_lp3FD6N8BT5u9mUeei5ZDY-Oa6koASjDKAgH8A5iWrGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>346922343</pqid></control><display><type>article</type><title>Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model</title><source>Springer Nature - Complete Springer Journals</source><creator>Nehrkorn, Thomas ; Eluszkiewicz, Janusz ; Wofsy, Steven C ; Lin, John C ; Gerbig, Christoph ; Longo, Marcos ; Freitas, Saulo</creator><creatorcontrib>Nehrkorn, Thomas ; Eluszkiewicz, Janusz ; Wofsy, Steven C ; Lin, John C ; Gerbig, Christoph ; Longo, Marcos ; Freitas, Saulo</creatorcontrib><description>This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO₂ measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.</description><identifier>ISSN: 0177-7971</identifier><identifier>EISSN: 1436-5065</identifier><identifier>DOI: 10.1007/s00703-010-0068-x</identifier><identifier>CODEN: MAPHEU</identifier><language>eng</language><publisher>Vienna: Vienna : Springer Vienna</publisher><subject>Air pollution ; Air quality ; Aquatic Pollution ; Atmospheric Sciences ; Climatology ; Conservation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Emergency preparedness ; Estimates ; Exact sciences and technology ; External geophysics ; Fluxes ; Geophysics. Techniques, methods, instrumentation and models ; Greenhouse gases ; Math. Appl. in Environmental Science ; Mathematical models ; Meteorology ; Original Paper ; Other topics in atmospheric geophysics ; Prediction models ; Stochastic models ; Terrestrial Pollution ; Transport ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather ; Weather forecasting</subject><ispartof>Meteorology and atmospheric physics, 2010-06, Vol.107 (1-2), p.51-64</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-86d8c0438de0a53de580e38a8e53338ed584ffdf790cd984fb0cdcd562da513b3</citedby><cites>FETCH-LOGICAL-c434t-86d8c0438de0a53de580e38a8e53338ed584ffdf790cd984fb0cdcd562da513b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00703-010-0068-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00703-010-0068-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22839164$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nehrkorn, Thomas</creatorcontrib><creatorcontrib>Eluszkiewicz, Janusz</creatorcontrib><creatorcontrib>Wofsy, Steven C</creatorcontrib><creatorcontrib>Lin, John C</creatorcontrib><creatorcontrib>Gerbig, Christoph</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Freitas, Saulo</creatorcontrib><title>Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model</title><title>Meteorology and atmospheric physics</title><addtitle>Meteorol Atmos Phys</addtitle><description>This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO₂ measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climatology</subject><subject>Conservation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Emergency preparedness</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluxes</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Greenhouse gases</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Original Paper</subject><subject>Other topics in atmospheric geophysics</subject><subject>Prediction models</subject><subject>Stochastic models</subject><subject>Terrestrial Pollution</subject><subject>Transport</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0177-7971</issn><issn>1436-5065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kdFrFDEQxhdR8Kz-AT65CNL6EM3sZLPZRzmsFg4K7RUfQ5rM3m3Z25zJnq3_vXNsUfChL5kJ-X0fk_mK4i3ITyBl8znzIVFIkEJKbcTDs2IBCrWopa6fFwsJTSOatoGXxauc7yTfdQWLYruMh_1AobwnN20plYkyueS3pRtD2cVE3uWpHzciT9Fvj70vp35Hoh9_UZpYObhNcuOmd2M5cZP3MU3l2Y-rc3G9vlitP5a7GGh4Xbzo3JDpzWM9KW7Ov66X38Xq8tvF8stKeIVqEkYH46VCE0i6GgPVRhIaZ6hGREOhNqrrQte00oeW-1uuPtS6Cq4GvMWT4nT23af480B5srs-exoGN1I8ZNsopaFBaJk8e5JkipcK0BhG3_-H3sVDGvkfFpVuqwoVMgQz5FPMOVFn96nfufTbgrTHkOwckuWQ7DEk-8CaD4_GLns3dLw_3-e_wqoy2IJWzFUzl_lp3FD6N8BT5u9mUeei5ZDY-Oa6koASjDKAgH8A5iWrGw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Nehrkorn, Thomas</creator><creator>Eluszkiewicz, Janusz</creator><creator>Wofsy, Steven C</creator><creator>Lin, John C</creator><creator>Gerbig, Christoph</creator><creator>Longo, Marcos</creator><creator>Freitas, Saulo</creator><general>Vienna : Springer Vienna</general><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100601</creationdate><title>Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model</title><author>Nehrkorn, Thomas ; Eluszkiewicz, Janusz ; Wofsy, Steven C ; Lin, John C ; Gerbig, Christoph ; Longo, Marcos ; Freitas, Saulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-86d8c0438de0a53de580e38a8e53338ed584ffdf790cd984fb0cdcd562da513b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climatology</topic><topic>Conservation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Emergency preparedness</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluxes</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Greenhouse gases</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Original Paper</topic><topic>Other topics in atmospheric geophysics</topic><topic>Prediction models</topic><topic>Stochastic models</topic><topic>Terrestrial Pollution</topic><topic>Transport</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nehrkorn, Thomas</creatorcontrib><creatorcontrib>Eluszkiewicz, Janusz</creatorcontrib><creatorcontrib>Wofsy, Steven C</creatorcontrib><creatorcontrib>Lin, John C</creatorcontrib><creatorcontrib>Gerbig, Christoph</creatorcontrib><creatorcontrib>Longo, Marcos</creatorcontrib><creatorcontrib>Freitas, Saulo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Meteorology and atmospheric physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nehrkorn, Thomas</au><au>Eluszkiewicz, Janusz</au><au>Wofsy, Steven C</au><au>Lin, John C</au><au>Gerbig, Christoph</au><au>Longo, Marcos</au><au>Freitas, Saulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model</atitle><jtitle>Meteorology and atmospheric physics</jtitle><stitle>Meteorol Atmos Phys</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>107</volume><issue>1-2</issue><spage>51</spage><epage>64</epage><pages>51-64</pages><issn>0177-7971</issn><eissn>1436-5065</eissn><coden>MAPHEU</coden><abstract>This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO₂ measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.</abstract><cop>Vienna</cop><pub>Vienna : Springer Vienna</pub><doi>10.1007/s00703-010-0068-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-7971
ispartof Meteorology and atmospheric physics, 2010-06, Vol.107 (1-2), p.51-64
issn 0177-7971
1436-5065
language eng
recordid cdi_proquest_miscellaneous_744617319
source Springer Nature - Complete Springer Journals
subjects Air pollution
Air quality
Aquatic Pollution
Atmospheric Sciences
Climatology
Conservation
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Emergency preparedness
Estimates
Exact sciences and technology
External geophysics
Fluxes
Geophysics. Techniques, methods, instrumentation and models
Greenhouse gases
Math. Appl. in Environmental Science
Mathematical models
Meteorology
Original Paper
Other topics in atmospheric geophysics
Prediction models
Stochastic models
Terrestrial Pollution
Transport
Waste Water Technology
Water Management
Water Pollution Control
Weather
Weather forecasting
title Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20weather%20research%20and%20forecasting-stochastic%20time-inverted%20lagrangian%20transport%20(WRF-STILT)%20model&rft.jtitle=Meteorology%20and%20atmospheric%20physics&rft.au=Nehrkorn,%20Thomas&rft.date=2010-06-01&rft.volume=107&rft.issue=1-2&rft.spage=51&rft.epage=64&rft.pages=51-64&rft.issn=0177-7971&rft.eissn=1436-5065&rft.coden=MAPHEU&rft_id=info:doi/10.1007/s00703-010-0068-x&rft_dat=%3Cproquest_cross%3E1730071178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=346922343&rft_id=info:pmid/&rfr_iscdi=true