Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana

Interactions of the plant specific insert and histidine residues may explain the broad pH stability (pH 3–8) of recombinant aspartic proteinase A1 from Arabidopsis thaliana. Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry (Oxford) 2010-04, Vol.71 (5), p.515-523
Hauptverfasser: Mazorra-Manzano, Miguel A., Tanaka, Takuji, Dee, Derek R., Yada, Rickey Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 5
container_start_page 515
container_title Phytochemistry (Oxford)
container_volume 71
creator Mazorra-Manzano, Miguel A.
Tanaka, Takuji
Dee, Derek R.
Yada, Rickey Y.
description Interactions of the plant specific insert and histidine residues may explain the broad pH stability (pH 3–8) of recombinant aspartic proteinase A1 from Arabidopsis thaliana. Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher α-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3–8) with the highest stability at pH 5–6, where 70–80% of the activity was retained after 1 month at 37 °C. Using calorimetry, a melting point of 79.6 °C was observed at pH 5.3. Cleavage profiles of insulin β-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu 15–Tyr 16 peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.
doi_str_mv 10.1016/j.phytochem.2009.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744616079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003194220900541X</els_id><sourcerecordid>733839084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e420d91ffbd4974ba1539a30c1c2cb5f4e4296dce69da8920bc37959a7b5689c3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EokvhFWguiNMG_4sTH1cV_6RKHErP1mRis14lcbAdpHLiHXhDngS3u5RjTyONft_MN_MRcsFozShT7w71sr_NAfd2qjmluma8prR5Qjasa8VWtJQ-JRtKBdtqyfkZeZHSgRaiUeo5OSuSVjdUbIi_znHFvEb759dvt86YfZgr3EMEzDb6n3DfCK7Ke1tFi2Hq_QxzriAtELPHaokh29JLttqxysUwVbsIvR_CknwqOhg9zPCSPHMwJvvqVM_JzYf3Xy8_ba--fPx8ubvaYsN53lrJ6aCZc_0gdSt7YI3QICgy5Ng3ThZAqwGt0gN0mtMeRblFQ9s3qtMozsnb49zi6_tqUzaTT2jHEWYb1mRaKRVT5f7HSSE6oWknC9keSYwhpWidWaKfIN4aRs1dIOZgHgIxd4EYxk15d1G-Pu1Y-8kOD7p_CRTgzQmAhDC6CDP69J_jijGpeOEujpyDYOBbLMzNNadMUNYJIe9N7o6ELd_94W00Cb2d0Q6-5JbNEPyjdv8Cyl25sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733839084</pqid></control><display><type>article</type><title>Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mazorra-Manzano, Miguel A. ; Tanaka, Takuji ; Dee, Derek R. ; Yada, Rickey Y.</creator><creatorcontrib>Mazorra-Manzano, Miguel A. ; Tanaka, Takuji ; Dee, Derek R. ; Yada, Rickey Y.</creatorcontrib><description>Interactions of the plant specific insert and histidine residues may explain the broad pH stability (pH 3–8) of recombinant aspartic proteinase A1 from Arabidopsis thaliana. Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher α-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3–8) with the highest stability at pH 5–6, where 70–80% of the activity was retained after 1 month at 37 °C. Using calorimetry, a melting point of 79.6 °C was observed at pH 5.3. Cleavage profiles of insulin β-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu 15–Tyr 16 peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.</description><identifier>ISSN: 0031-9422</identifier><identifier>EISSN: 1873-3700</identifier><identifier>DOI: 10.1016/j.phytochem.2009.12.005</identifier><identifier>PMID: 20079503</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Arabidopsis - chemistry ; Arabidopsis - enzymology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - pharmacokinetics ; Arabidopsis thaliana ; Aspartic Acid Endopeptidases - chemistry ; Aspartic Acid Endopeptidases - pharmacokinetics ; Aspartic Acid Proteases - chemistry ; Aspartic proteinase ; aspartic proteinases ; Biological and medical sciences ; Chemical constitution ; Circular Dichroism ; Cruciferae ; enzyme activity ; enzyme kinetics ; enzyme substrates ; Fundamental and applied biological sciences. Psychology ; histidine ; Hydrogen-Ion Concentration ; Hydrolysis ; insulin ; Models, Molecular ; oxidation ; pH stability ; Plant aspartic proteinase ; Plant physiology and development ; Plant specific insert ; Proteases ; Protein Conformation ; recombinant fusion proteins ; Recombinant Proteins - chemistry ; Structure-Activity Relationship ; structure-activity relationships ; Substrate Specificity ; Thermal stability</subject><ispartof>Phytochemistry (Oxford), 2010-04, Vol.71 (5), p.515-523</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2009 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e420d91ffbd4974ba1539a30c1c2cb5f4e4296dce69da8920bc37959a7b5689c3</citedby><cites>FETCH-LOGICAL-c522t-e420d91ffbd4974ba1539a30c1c2cb5f4e4296dce69da8920bc37959a7b5689c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.phytochem.2009.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22611462$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20079503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazorra-Manzano, Miguel A.</creatorcontrib><creatorcontrib>Tanaka, Takuji</creatorcontrib><creatorcontrib>Dee, Derek R.</creatorcontrib><creatorcontrib>Yada, Rickey Y.</creatorcontrib><title>Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana</title><title>Phytochemistry (Oxford)</title><addtitle>Phytochemistry</addtitle><description>Interactions of the plant specific insert and histidine residues may explain the broad pH stability (pH 3–8) of recombinant aspartic proteinase A1 from Arabidopsis thaliana. Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher α-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3–8) with the highest stability at pH 5–6, where 70–80% of the activity was retained after 1 month at 37 °C. Using calorimetry, a melting point of 79.6 °C was observed at pH 5.3. Cleavage profiles of insulin β-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu 15–Tyr 16 peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.</description><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - pharmacokinetics</subject><subject>Arabidopsis thaliana</subject><subject>Aspartic Acid Endopeptidases - chemistry</subject><subject>Aspartic Acid Endopeptidases - pharmacokinetics</subject><subject>Aspartic Acid Proteases - chemistry</subject><subject>Aspartic proteinase</subject><subject>aspartic proteinases</subject><subject>Biological and medical sciences</subject><subject>Chemical constitution</subject><subject>Circular Dichroism</subject><subject>Cruciferae</subject><subject>enzyme activity</subject><subject>enzyme kinetics</subject><subject>enzyme substrates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>histidine</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>insulin</subject><subject>Models, Molecular</subject><subject>oxidation</subject><subject>pH stability</subject><subject>Plant aspartic proteinase</subject><subject>Plant physiology and development</subject><subject>Plant specific insert</subject><subject>Proteases</subject><subject>Protein Conformation</subject><subject>recombinant fusion proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>structure-activity relationships</subject><subject>Substrate Specificity</subject><subject>Thermal stability</subject><issn>0031-9422</issn><issn>1873-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EokvhFWguiNMG_4sTH1cV_6RKHErP1mRis14lcbAdpHLiHXhDngS3u5RjTyONft_MN_MRcsFozShT7w71sr_NAfd2qjmluma8prR5Qjasa8VWtJQ-JRtKBdtqyfkZeZHSgRaiUeo5OSuSVjdUbIi_znHFvEb759dvt86YfZgr3EMEzDb6n3DfCK7Ke1tFi2Hq_QxzriAtELPHaokh29JLttqxysUwVbsIvR_CknwqOhg9zPCSPHMwJvvqVM_JzYf3Xy8_ba--fPx8ubvaYsN53lrJ6aCZc_0gdSt7YI3QICgy5Ng3ThZAqwGt0gN0mtMeRblFQ9s3qtMozsnb49zi6_tqUzaTT2jHEWYb1mRaKRVT5f7HSSE6oWknC9keSYwhpWidWaKfIN4aRs1dIOZgHgIxd4EYxk15d1G-Pu1Y-8kOD7p_CRTgzQmAhDC6CDP69J_jijGpeOEujpyDYOBbLMzNNadMUNYJIe9N7o6ELd_94W00Cb2d0Q6-5JbNEPyjdv8Cyl25sw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Mazorra-Manzano, Miguel A.</creator><creator>Tanaka, Takuji</creator><creator>Dee, Derek R.</creator><creator>Yada, Rickey Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100401</creationdate><title>Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana</title><author>Mazorra-Manzano, Miguel A. ; Tanaka, Takuji ; Dee, Derek R. ; Yada, Rickey Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e420d91ffbd4974ba1539a30c1c2cb5f4e4296dce69da8920bc37959a7b5689c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - pharmacokinetics</topic><topic>Arabidopsis thaliana</topic><topic>Aspartic Acid Endopeptidases - chemistry</topic><topic>Aspartic Acid Endopeptidases - pharmacokinetics</topic><topic>Aspartic Acid Proteases - chemistry</topic><topic>Aspartic proteinase</topic><topic>aspartic proteinases</topic><topic>Biological and medical sciences</topic><topic>Chemical constitution</topic><topic>Circular Dichroism</topic><topic>Cruciferae</topic><topic>enzyme activity</topic><topic>enzyme kinetics</topic><topic>enzyme substrates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>histidine</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>insulin</topic><topic>Models, Molecular</topic><topic>oxidation</topic><topic>pH stability</topic><topic>Plant aspartic proteinase</topic><topic>Plant physiology and development</topic><topic>Plant specific insert</topic><topic>Proteases</topic><topic>Protein Conformation</topic><topic>recombinant fusion proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>structure-activity relationships</topic><topic>Substrate Specificity</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazorra-Manzano, Miguel A.</creatorcontrib><creatorcontrib>Tanaka, Takuji</creatorcontrib><creatorcontrib>Dee, Derek R.</creatorcontrib><creatorcontrib>Yada, Rickey Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Phytochemistry (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazorra-Manzano, Miguel A.</au><au>Tanaka, Takuji</au><au>Dee, Derek R.</au><au>Yada, Rickey Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana</atitle><jtitle>Phytochemistry (Oxford)</jtitle><addtitle>Phytochemistry</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>71</volume><issue>5</issue><spage>515</spage><epage>523</epage><pages>515-523</pages><issn>0031-9422</issn><eissn>1873-3700</eissn><abstract>Interactions of the plant specific insert and histidine residues may explain the broad pH stability (pH 3–8) of recombinant aspartic proteinase A1 from Arabidopsis thaliana. Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher α-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3–8) with the highest stability at pH 5–6, where 70–80% of the activity was retained after 1 month at 37 °C. Using calorimetry, a melting point of 79.6 °C was observed at pH 5.3. Cleavage profiles of insulin β-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu 15–Tyr 16 peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><pmid>20079503</pmid><doi>10.1016/j.phytochem.2009.12.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9422
ispartof Phytochemistry (Oxford), 2010-04, Vol.71 (5), p.515-523
issn 0031-9422
1873-3700
language eng
recordid cdi_proquest_miscellaneous_744616079
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Arabidopsis - chemistry
Arabidopsis - enzymology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - pharmacokinetics
Arabidopsis thaliana
Aspartic Acid Endopeptidases - chemistry
Aspartic Acid Endopeptidases - pharmacokinetics
Aspartic Acid Proteases - chemistry
Aspartic proteinase
aspartic proteinases
Biological and medical sciences
Chemical constitution
Circular Dichroism
Cruciferae
enzyme activity
enzyme kinetics
enzyme substrates
Fundamental and applied biological sciences. Psychology
histidine
Hydrogen-Ion Concentration
Hydrolysis
insulin
Models, Molecular
oxidation
pH stability
Plant aspartic proteinase
Plant physiology and development
Plant specific insert
Proteases
Protein Conformation
recombinant fusion proteins
Recombinant Proteins - chemistry
Structure-Activity Relationship
structure-activity relationships
Substrate Specificity
Thermal stability
title Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93function%20characterization%20of%20the%20recombinant%20aspartic%20proteinase%20A1%20from%20Arabidopsis%20thaliana&rft.jtitle=Phytochemistry%20(Oxford)&rft.au=Mazorra-Manzano,%20Miguel%20A.&rft.date=2010-04-01&rft.volume=71&rft.issue=5&rft.spage=515&rft.epage=523&rft.pages=515-523&rft.issn=0031-9422&rft.eissn=1873-3700&rft_id=info:doi/10.1016/j.phytochem.2009.12.005&rft_dat=%3Cproquest_cross%3E733839084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733839084&rft_id=info:pmid/20079503&rft_els_id=S003194220900541X&rfr_iscdi=true