Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells
Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatal...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2010-05, Vol.86 (6), p.1895-1902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1902 |
---|---|
container_issue | 6 |
container_start_page | 1895 |
container_title | Applied microbiology and biotechnology |
container_volume | 86 |
creator | Inaba, Chiaki Higuchi, Shinsuke Morisaka, Hironobu Kuroda, Kouichi Ueda, Mitsuyoshi |
description | Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatalyst displaying CN1 on the yeast cell surface with α-agglutinin as the anchor protein. The display of CN1 was confirmed by immunofluorescent labeling, and CN1-displaying yeast cells showed hydrolytic activity for carnosine. When carnosine was synthesized by the reverse reaction of CN1, organic solvents were added to the reaction mixture to reduce the water content. The CN1-displaying yeast cells were lyophilized and examined for organic solvent tolerance. Results showed that the CN1-displaying yeast cells retained their original hydrolytic activity in hydrophobic organic solvents. In the hydrophobic organic solvents and hydrophobic ionic liquids, the CN1-displaying yeast cells catalyzed carnosine synthesis, and carnosine was synthesized from nonprotected amino acids in only one step. The results of this research suggest that the whole-cell biocatalyst displaying CN1 on the yeast cell surface can be used to synthesize carnosine with ease and convenience. |
doi_str_mv | 10.1007/s00253-009-2396-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744614729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025978971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-e3e5dcd81d81adefbf4f31bb22b4797b34b38b8c0f2817a128fcf0e43dac39473</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhosoznX0B7jRIIir6knSNs1SBr9gwMU465Dm45qhTWpOu7j_3pReZ8CFQiCQPO97Pt6qeknhPQUQHxCAtbwGkDXjsqvFo-pAG85q6GjzuDoAFW0tWtlfVM8Q7wAo67vuaXXBAHoGoj1U-eYUl58OA5LkiV-jWUKKeiQ2zG5egnXE6BwThuiIz2kiMcU5p8WZxVmipxAT0SZYJGthjve0RlfbgPOoT9vzyWlciHHjiM-rJ16P6F6c78vq9vOnH1df6-vvX75dfbyuTcvYUjvuWmtsT8vR1vnBN57TYWBsaIQUA28G3g-9Ac96KnQZzRsPruFWGy4bwS-rd7tvaffX6nBRU8CtAx1dWlGJpilrEkz-n-RcQiNpX8g3f5F3ac1lX6gYkx1wKbfCdIdMTojZeTXnMOl8UhTUFpzag1MlOLUFpzbNq7PxOkzO3iv-JFWAt2dAo9GjzzqagA8c62EbqHBs57B8xaPLDx3-q_rrXeR1UvqYi_HtDQPKoczMGKX8N6JIu4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229603997</pqid></control><display><type>article</type><title>Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Inaba, Chiaki ; Higuchi, Shinsuke ; Morisaka, Hironobu ; Kuroda, Kouichi ; Ueda, Mitsuyoshi</creator><creatorcontrib>Inaba, Chiaki ; Higuchi, Shinsuke ; Morisaka, Hironobu ; Kuroda, Kouichi ; Ueda, Mitsuyoshi</creatorcontrib><description>Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatalyst displaying CN1 on the yeast cell surface with α-agglutinin as the anchor protein. The display of CN1 was confirmed by immunofluorescent labeling, and CN1-displaying yeast cells showed hydrolytic activity for carnosine. When carnosine was synthesized by the reverse reaction of CN1, organic solvents were added to the reaction mixture to reduce the water content. The CN1-displaying yeast cells were lyophilized and examined for organic solvent tolerance. Results showed that the CN1-displaying yeast cells retained their original hydrolytic activity in hydrophobic organic solvents. In the hydrophobic organic solvents and hydrophobic ionic liquids, the CN1-displaying yeast cells catalyzed carnosine synthesis, and carnosine was synthesized from nonprotected amino acids in only one step. The results of this research suggest that the whole-cell biocatalyst displaying CN1 on the yeast cell surface can be used to synthesize carnosine with ease and convenience.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-009-2396-7</identifier><identifier>PMID: 20082075</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino acids ; Antioxidants ; Applied Genetics and Molecular Biotechnology ; beta-Alanine - metabolism ; Biocatalysis ; Biocatalysts ; Bioengineering ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Carnosine - biosynthesis ; Catalysts ; Cells ; Cloning, Molecular ; Dipeptidases - genetics ; Dipeptidases - metabolism ; Enzymes ; Freeze Drying ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Genetic engineering ; Histidine - metabolism ; Humans ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Organic solvents ; Peptides ; Physiology ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Signal transduction ; Solvents ; Studies ; Substrate Specificity ; Transformation, Genetic ; Water content ; Yeast ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2010-05, Vol.86 (6), p.1895-1902</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-e3e5dcd81d81adefbf4f31bb22b4797b34b38b8c0f2817a128fcf0e43dac39473</citedby><cites>FETCH-LOGICAL-c522t-e3e5dcd81d81adefbf4f31bb22b4797b34b38b8c0f2817a128fcf0e43dac39473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-009-2396-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-009-2396-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22807446$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20082075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inaba, Chiaki</creatorcontrib><creatorcontrib>Higuchi, Shinsuke</creatorcontrib><creatorcontrib>Morisaka, Hironobu</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><title>Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatalyst displaying CN1 on the yeast cell surface with α-agglutinin as the anchor protein. The display of CN1 was confirmed by immunofluorescent labeling, and CN1-displaying yeast cells showed hydrolytic activity for carnosine. When carnosine was synthesized by the reverse reaction of CN1, organic solvents were added to the reaction mixture to reduce the water content. The CN1-displaying yeast cells were lyophilized and examined for organic solvent tolerance. Results showed that the CN1-displaying yeast cells retained their original hydrolytic activity in hydrophobic organic solvents. In the hydrophobic organic solvents and hydrophobic ionic liquids, the CN1-displaying yeast cells catalyzed carnosine synthesis, and carnosine was synthesized from nonprotected amino acids in only one step. The results of this research suggest that the whole-cell biocatalyst displaying CN1 on the yeast cell surface can be used to synthesize carnosine with ease and convenience.</description><subject>Amino acids</subject><subject>Antioxidants</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>beta-Alanine - metabolism</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>Bioengineering</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carnosine - biosynthesis</subject><subject>Catalysts</subject><subject>Cells</subject><subject>Cloning, Molecular</subject><subject>Dipeptidases - genetics</subject><subject>Dipeptidases - metabolism</subject><subject>Enzymes</subject><subject>Freeze Drying</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Histidine - metabolism</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Organic solvents</subject><subject>Peptides</subject><subject>Physiology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal transduction</subject><subject>Solvents</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Transformation, Genetic</subject><subject>Water content</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU2L1TAUhosoznX0B7jRIIir6knSNs1SBr9gwMU465Dm45qhTWpOu7j_3pReZ8CFQiCQPO97Pt6qeknhPQUQHxCAtbwGkDXjsqvFo-pAG85q6GjzuDoAFW0tWtlfVM8Q7wAo67vuaXXBAHoGoj1U-eYUl58OA5LkiV-jWUKKeiQ2zG5egnXE6BwThuiIz2kiMcU5p8WZxVmipxAT0SZYJGthjve0RlfbgPOoT9vzyWlciHHjiM-rJ16P6F6c78vq9vOnH1df6-vvX75dfbyuTcvYUjvuWmtsT8vR1vnBN57TYWBsaIQUA28G3g-9Ac96KnQZzRsPruFWGy4bwS-rd7tvaffX6nBRU8CtAx1dWlGJpilrEkz-n-RcQiNpX8g3f5F3ac1lX6gYkx1wKbfCdIdMTojZeTXnMOl8UhTUFpzag1MlOLUFpzbNq7PxOkzO3iv-JFWAt2dAo9GjzzqagA8c62EbqHBs57B8xaPLDx3-q_rrXeR1UvqYi_HtDQPKoczMGKX8N6JIu4I</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Inaba, Chiaki</creator><creator>Higuchi, Shinsuke</creator><creator>Morisaka, Hironobu</creator><creator>Kuroda, Kouichi</creator><creator>Ueda, Mitsuyoshi</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20100501</creationdate><title>Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells</title><author>Inaba, Chiaki ; Higuchi, Shinsuke ; Morisaka, Hironobu ; Kuroda, Kouichi ; Ueda, Mitsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-e3e5dcd81d81adefbf4f31bb22b4797b34b38b8c0f2817a128fcf0e43dac39473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino acids</topic><topic>Antioxidants</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>beta-Alanine - metabolism</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>Bioengineering</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carnosine - biosynthesis</topic><topic>Catalysts</topic><topic>Cells</topic><topic>Cloning, Molecular</topic><topic>Dipeptidases - genetics</topic><topic>Dipeptidases - metabolism</topic><topic>Enzymes</topic><topic>Freeze Drying</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Histidine - metabolism</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Organic solvents</topic><topic>Peptides</topic><topic>Physiology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal transduction</topic><topic>Solvents</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Transformation, Genetic</topic><topic>Water content</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inaba, Chiaki</creatorcontrib><creatorcontrib>Higuchi, Shinsuke</creatorcontrib><creatorcontrib>Morisaka, Hironobu</creatorcontrib><creatorcontrib>Kuroda, Kouichi</creatorcontrib><creatorcontrib>Ueda, Mitsuyoshi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inaba, Chiaki</au><au>Higuchi, Shinsuke</au><au>Morisaka, Hironobu</au><au>Kuroda, Kouichi</au><au>Ueda, Mitsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>86</volume><issue>6</issue><spage>1895</spage><epage>1902</epage><pages>1895-1902</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Carnosine (β-alanyl-l-histidine) is one of the bioactive dipeptides and has antioxidant, antiglycation, and cytoplasmic buffering properties. In this study, to synthesize carnosine from nonprotected amino acids as substrates, we cloned the carnosinase (CN1) gene and constructed a whole-cell biocatalyst displaying CN1 on the yeast cell surface with α-agglutinin as the anchor protein. The display of CN1 was confirmed by immunofluorescent labeling, and CN1-displaying yeast cells showed hydrolytic activity for carnosine. When carnosine was synthesized by the reverse reaction of CN1, organic solvents were added to the reaction mixture to reduce the water content. The CN1-displaying yeast cells were lyophilized and examined for organic solvent tolerance. Results showed that the CN1-displaying yeast cells retained their original hydrolytic activity in hydrophobic organic solvents. In the hydrophobic organic solvents and hydrophobic ionic liquids, the CN1-displaying yeast cells catalyzed carnosine synthesis, and carnosine was synthesized from nonprotected amino acids in only one step. The results of this research suggest that the whole-cell biocatalyst displaying CN1 on the yeast cell surface can be used to synthesize carnosine with ease and convenience.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20082075</pmid><doi>10.1007/s00253-009-2396-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2010-05, Vol.86 (6), p.1895-1902 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_744614729 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Amino acids Antioxidants Applied Genetics and Molecular Biotechnology beta-Alanine - metabolism Biocatalysis Biocatalysts Bioengineering Biological and medical sciences Biomedical and Life Sciences Biotechnology Carnosine - biosynthesis Catalysts Cells Cloning, Molecular Dipeptidases - genetics Dipeptidases - metabolism Enzymes Freeze Drying Fundamental and applied biological sciences. Psychology Gene expression Genetic engineering Histidine - metabolism Humans Hydrolysis Hydrophobic and Hydrophilic Interactions Life Sciences Microbial Genetics and Genomics Microbiology Organic solvents Peptides Physiology Recombinant Proteins - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Signal transduction Solvents Studies Substrate Specificity Transformation, Genetic Water content Yeast Yeasts |
title | Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20functional%20dipeptide%20carnosine%20from%20nonprotected%20amino%20acids%20using%20carnosinase-displaying%20yeast%20cells&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Inaba,%20Chiaki&rft.date=2010-05-01&rft.volume=86&rft.issue=6&rft.spage=1895&rft.epage=1902&rft.pages=1895-1902&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-009-2396-7&rft_dat=%3Cproquest_cross%3E2025978971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229603997&rft_id=info:pmid/20082075&rfr_iscdi=true |