Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout

Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chirality (New York, N.Y.) N.Y.), 2010-02, Vol.22 (2), p.183-192
Hauptverfasser: Kenneke, John F., Ekman, Drew R., Mazur, Chris S., Konwick, Brad J., Fisk, Aaron T., Avants, Jimmy K., Garrison, A. Wayne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 183
container_title Chirality (New York, N.Y.)
container_volume 22
creator Kenneke, John F.
Ekman, Drew R.
Mazur, Chris S.
Konwick, Brad J.
Fisk, Aaron T.
Avants, Jimmy K.
Garrison, A. Wayne
description Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/chir.20725
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744614073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744614073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EomnhwgMg36gqbRnb693sEUW0DaqKFBW14mJ5vePUsLsutpOSp-CVcUhabj1Z4_nms0c_Ie8YnDIA_tHcuXDKoebyBZkwyaGoRHX7kkxg2jQFQMkPyGGMPwCgqUT5mhywpmRTKcWE_JmPCZdBJ-dH6i0dMOnW935wJlI9dtSNdO1S8I8dFweqY9SbSK0Pub3GmNwyC8YlTXdIY8KAPmKPJrk10hT0GDM6PL2RgtOdG9DmMuuDdmPrH_K1X6U35JXVfcS3-_OIfDv7fD27KC6_ns9nny4LI4WQBWstYsvBStDamLYytTQGOPKat9hNW2AcuGWSscawqalqRGMNa3SHjbBMHJEPO-998L9WeQU1uGiw7_WIfhVVXZYVK6EWmTx-lmRbtBaygYye7FATfIwBrboPbtBhoxiobVRqG5X6F1WG3--9q3bA7j-6zyYDbAc8uB43z6jU7GK-eJQWuxmXY_j9NKPDT5X_WEt1c3Wu-Per6y9cLtRC_AW03bLO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744673590</pqid></control><display><type>article</type><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</creator><creatorcontrib>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</creatorcontrib><description>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0899-0042</identifier><identifier>EISSN: 1520-636X</identifier><identifier>DOI: 10.1002/chir.20725</identifier><identifier>PMID: 19418553</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Antifungal Agents - analysis ; Chirality ; Chromatography, High Pressure Liquid ; conazoles ; Cytochrome P-450 CYP3A - metabolism ; diastereomers ; Enantiomers ; Environmental Exposure ; exposure ; Fungicides ; Fungicides, Industrial - metabolism ; Metabolism ; Metabolites ; metabolomics ; Metabolomics - methods ; Microsomes ; Microsomes, Liver - metabolism ; Molecular Structure ; Oncorhynchus mykiss ; Oncorhynchus mykiss - metabolism ; Pesticide Residues - analysis ; rainbow trout ; Rats ; Rats, Sprague-Dawley ; Stereoisomerism ; stereoisomers ; stereoselectivity ; Structure-Activity Relationship ; Transformations ; triadimefon ; triadimenol ; triazoles ; Triazoles - metabolism ; Trout</subject><ispartof>Chirality (New York, N.Y.), 2010-02, Vol.22 (2), p.183-192</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</citedby><cites>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchir.20725$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchir.20725$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19418553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kenneke, John F.</creatorcontrib><creatorcontrib>Ekman, Drew R.</creatorcontrib><creatorcontrib>Mazur, Chris S.</creatorcontrib><creatorcontrib>Konwick, Brad J.</creatorcontrib><creatorcontrib>Fisk, Aaron T.</creatorcontrib><creatorcontrib>Avants, Jimmy K.</creatorcontrib><creatorcontrib>Garrison, A. Wayne</creatorcontrib><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><title>Chirality (New York, N.Y.)</title><addtitle>Chirality</addtitle><description>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Antifungal Agents - analysis</subject><subject>Chirality</subject><subject>Chromatography, High Pressure Liquid</subject><subject>conazoles</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>diastereomers</subject><subject>Enantiomers</subject><subject>Environmental Exposure</subject><subject>exposure</subject><subject>Fungicides</subject><subject>Fungicides, Industrial - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>Microsomes</subject><subject>Microsomes, Liver - metabolism</subject><subject>Molecular Structure</subject><subject>Oncorhynchus mykiss</subject><subject>Oncorhynchus mykiss - metabolism</subject><subject>Pesticide Residues - analysis</subject><subject>rainbow trout</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereoisomerism</subject><subject>stereoisomers</subject><subject>stereoselectivity</subject><subject>Structure-Activity Relationship</subject><subject>Transformations</subject><subject>triadimefon</subject><subject>triadimenol</subject><subject>triazoles</subject><subject>Triazoles - metabolism</subject><subject>Trout</subject><issn>0899-0042</issn><issn>1520-636X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EomnhwgMg36gqbRnb693sEUW0DaqKFBW14mJ5vePUsLsutpOSp-CVcUhabj1Z4_nms0c_Ie8YnDIA_tHcuXDKoebyBZkwyaGoRHX7kkxg2jQFQMkPyGGMPwCgqUT5mhywpmRTKcWE_JmPCZdBJ-dH6i0dMOnW935wJlI9dtSNdO1S8I8dFweqY9SbSK0Pub3GmNwyC8YlTXdIY8KAPmKPJrk10hT0GDM6PL2RgtOdG9DmMuuDdmPrH_K1X6U35JXVfcS3-_OIfDv7fD27KC6_ns9nny4LI4WQBWstYsvBStDamLYytTQGOPKat9hNW2AcuGWSscawqalqRGMNa3SHjbBMHJEPO-998L9WeQU1uGiw7_WIfhVVXZYVK6EWmTx-lmRbtBaygYye7FATfIwBrboPbtBhoxiobVRqG5X6F1WG3--9q3bA7j-6zyYDbAc8uB43z6jU7GK-eJQWuxmXY_j9NKPDT5X_WEt1c3Wu-Per6y9cLtRC_AW03bLO</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Kenneke, John F.</creator><creator>Ekman, Drew R.</creator><creator>Mazur, Chris S.</creator><creator>Konwick, Brad J.</creator><creator>Fisk, Aaron T.</creator><creator>Avants, Jimmy K.</creator><creator>Garrison, A. Wayne</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>201002</creationdate><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><author>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antifungal Agents - analysis</topic><topic>Chirality</topic><topic>Chromatography, High Pressure Liquid</topic><topic>conazoles</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>diastereomers</topic><topic>Enantiomers</topic><topic>Environmental Exposure</topic><topic>exposure</topic><topic>Fungicides</topic><topic>Fungicides, Industrial - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>Microsomes</topic><topic>Microsomes, Liver - metabolism</topic><topic>Molecular Structure</topic><topic>Oncorhynchus mykiss</topic><topic>Oncorhynchus mykiss - metabolism</topic><topic>Pesticide Residues - analysis</topic><topic>rainbow trout</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereoisomerism</topic><topic>stereoisomers</topic><topic>stereoselectivity</topic><topic>Structure-Activity Relationship</topic><topic>Transformations</topic><topic>triadimefon</topic><topic>triadimenol</topic><topic>triazoles</topic><topic>Triazoles - metabolism</topic><topic>Trout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenneke, John F.</creatorcontrib><creatorcontrib>Ekman, Drew R.</creatorcontrib><creatorcontrib>Mazur, Chris S.</creatorcontrib><creatorcontrib>Konwick, Brad J.</creatorcontrib><creatorcontrib>Fisk, Aaron T.</creatorcontrib><creatorcontrib>Avants, Jimmy K.</creatorcontrib><creatorcontrib>Garrison, A. Wayne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Chirality (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenneke, John F.</au><au>Ekman, Drew R.</au><au>Mazur, Chris S.</au><au>Konwick, Brad J.</au><au>Fisk, Aaron T.</au><au>Avants, Jimmy K.</au><au>Garrison, A. Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</atitle><jtitle>Chirality (New York, N.Y.)</jtitle><addtitle>Chirality</addtitle><date>2010-02</date><risdate>2010</risdate><volume>22</volume><issue>2</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0899-0042</issn><eissn>1520-636X</eissn><abstract>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19418553</pmid><doi>10.1002/chir.20725</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-0042
ispartof Chirality (New York, N.Y.), 2010-02, Vol.22 (2), p.183-192
issn 0899-0042
1520-636X
language eng
recordid cdi_proquest_miscellaneous_744614073
source MEDLINE; Access via Wiley Online Library
subjects Animals
Antifungal Agents - analysis
Chirality
Chromatography, High Pressure Liquid
conazoles
Cytochrome P-450 CYP3A - metabolism
diastereomers
Enantiomers
Environmental Exposure
exposure
Fungicides
Fungicides, Industrial - metabolism
Metabolism
Metabolites
metabolomics
Metabolomics - methods
Microsomes
Microsomes, Liver - metabolism
Molecular Structure
Oncorhynchus mykiss
Oncorhynchus mykiss - metabolism
Pesticide Residues - analysis
rainbow trout
Rats
Rats, Sprague-Dawley
Stereoisomerism
stereoisomers
stereoselectivity
Structure-Activity Relationship
Transformations
triadimefon
triadimenol
triazoles
Triazoles - metabolism
Trout
title Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20metabolomics%20and%20in%20vitro%20metabolism%20assays%20for%20investigating%20the%20stereoselective%20transformation%20of%20triadimefon%20in%20rainbow%20trout&rft.jtitle=Chirality%20(New%20York,%20N.Y.)&rft.au=Kenneke,%20John%20F.&rft.date=2010-02&rft.volume=22&rft.issue=2&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0899-0042&rft.eissn=1520-636X&rft_id=info:doi/10.1002/chir.20725&rft_dat=%3Cproquest_cross%3E744614073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744673590&rft_id=info:pmid/19418553&rfr_iscdi=true