Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout
Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center wi...
Gespeichert in:
Veröffentlicht in: | Chirality (New York, N.Y.) N.Y.), 2010-02, Vol.22 (2), p.183-192 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 183 |
container_title | Chirality (New York, N.Y.) |
container_volume | 22 |
creator | Kenneke, John F. Ekman, Drew R. Mazur, Chris S. Konwick, Brad J. Fisk, Aaron T. Avants, Jimmy K. Garrison, A. Wayne |
description | Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/chir.20725 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744614073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744614073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EomnhwgMg36gqbRnb693sEUW0DaqKFBW14mJ5vePUsLsutpOSp-CVcUhabj1Z4_nms0c_Ie8YnDIA_tHcuXDKoebyBZkwyaGoRHX7kkxg2jQFQMkPyGGMPwCgqUT5mhywpmRTKcWE_JmPCZdBJ-dH6i0dMOnW935wJlI9dtSNdO1S8I8dFweqY9SbSK0Pub3GmNwyC8YlTXdIY8KAPmKPJrk10hT0GDM6PL2RgtOdG9DmMuuDdmPrH_K1X6U35JXVfcS3-_OIfDv7fD27KC6_ns9nny4LI4WQBWstYsvBStDamLYytTQGOPKat9hNW2AcuGWSscawqalqRGMNa3SHjbBMHJEPO-998L9WeQU1uGiw7_WIfhVVXZYVK6EWmTx-lmRbtBaygYye7FATfIwBrboPbtBhoxiobVRqG5X6F1WG3--9q3bA7j-6zyYDbAc8uB43z6jU7GK-eJQWuxmXY_j9NKPDT5X_WEt1c3Wu-Per6y9cLtRC_AW03bLO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744673590</pqid></control><display><type>article</type><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</creator><creatorcontrib>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</creatorcontrib><description>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0899-0042</identifier><identifier>EISSN: 1520-636X</identifier><identifier>DOI: 10.1002/chir.20725</identifier><identifier>PMID: 19418553</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Antifungal Agents - analysis ; Chirality ; Chromatography, High Pressure Liquid ; conazoles ; Cytochrome P-450 CYP3A - metabolism ; diastereomers ; Enantiomers ; Environmental Exposure ; exposure ; Fungicides ; Fungicides, Industrial - metabolism ; Metabolism ; Metabolites ; metabolomics ; Metabolomics - methods ; Microsomes ; Microsomes, Liver - metabolism ; Molecular Structure ; Oncorhynchus mykiss ; Oncorhynchus mykiss - metabolism ; Pesticide Residues - analysis ; rainbow trout ; Rats ; Rats, Sprague-Dawley ; Stereoisomerism ; stereoisomers ; stereoselectivity ; Structure-Activity Relationship ; Transformations ; triadimefon ; triadimenol ; triazoles ; Triazoles - metabolism ; Trout</subject><ispartof>Chirality (New York, N.Y.), 2010-02, Vol.22 (2), p.183-192</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</citedby><cites>FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchir.20725$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchir.20725$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19418553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kenneke, John F.</creatorcontrib><creatorcontrib>Ekman, Drew R.</creatorcontrib><creatorcontrib>Mazur, Chris S.</creatorcontrib><creatorcontrib>Konwick, Brad J.</creatorcontrib><creatorcontrib>Fisk, Aaron T.</creatorcontrib><creatorcontrib>Avants, Jimmy K.</creatorcontrib><creatorcontrib>Garrison, A. Wayne</creatorcontrib><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><title>Chirality (New York, N.Y.)</title><addtitle>Chirality</addtitle><description>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Antifungal Agents - analysis</subject><subject>Chirality</subject><subject>Chromatography, High Pressure Liquid</subject><subject>conazoles</subject><subject>Cytochrome P-450 CYP3A - metabolism</subject><subject>diastereomers</subject><subject>Enantiomers</subject><subject>Environmental Exposure</subject><subject>exposure</subject><subject>Fungicides</subject><subject>Fungicides, Industrial - metabolism</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>metabolomics</subject><subject>Metabolomics - methods</subject><subject>Microsomes</subject><subject>Microsomes, Liver - metabolism</subject><subject>Molecular Structure</subject><subject>Oncorhynchus mykiss</subject><subject>Oncorhynchus mykiss - metabolism</subject><subject>Pesticide Residues - analysis</subject><subject>rainbow trout</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stereoisomerism</subject><subject>stereoisomers</subject><subject>stereoselectivity</subject><subject>Structure-Activity Relationship</subject><subject>Transformations</subject><subject>triadimefon</subject><subject>triadimenol</subject><subject>triazoles</subject><subject>Triazoles - metabolism</subject><subject>Trout</subject><issn>0899-0042</issn><issn>1520-636X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EomnhwgMg36gqbRnb693sEUW0DaqKFBW14mJ5vePUsLsutpOSp-CVcUhabj1Z4_nms0c_Ie8YnDIA_tHcuXDKoebyBZkwyaGoRHX7kkxg2jQFQMkPyGGMPwCgqUT5mhywpmRTKcWE_JmPCZdBJ-dH6i0dMOnW935wJlI9dtSNdO1S8I8dFweqY9SbSK0Pub3GmNwyC8YlTXdIY8KAPmKPJrk10hT0GDM6PL2RgtOdG9DmMuuDdmPrH_K1X6U35JXVfcS3-_OIfDv7fD27KC6_ns9nny4LI4WQBWstYsvBStDamLYytTQGOPKat9hNW2AcuGWSscawqalqRGMNa3SHjbBMHJEPO-998L9WeQU1uGiw7_WIfhVVXZYVK6EWmTx-lmRbtBaygYye7FATfIwBrboPbtBhoxiobVRqG5X6F1WG3--9q3bA7j-6zyYDbAc8uB43z6jU7GK-eJQWuxmXY_j9NKPDT5X_WEt1c3Wu-Per6y9cLtRC_AW03bLO</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Kenneke, John F.</creator><creator>Ekman, Drew R.</creator><creator>Mazur, Chris S.</creator><creator>Konwick, Brad J.</creator><creator>Fisk, Aaron T.</creator><creator>Avants, Jimmy K.</creator><creator>Garrison, A. Wayne</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>201002</creationdate><title>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</title><author>Kenneke, John F. ; Ekman, Drew R. ; Mazur, Chris S. ; Konwick, Brad J. ; Fisk, Aaron T. ; Avants, Jimmy K. ; Garrison, A. Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-1bfeeb20f50aaccb6c75cc02e272bed8b01202f15119c18c67eecfc19ade93f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antifungal Agents - analysis</topic><topic>Chirality</topic><topic>Chromatography, High Pressure Liquid</topic><topic>conazoles</topic><topic>Cytochrome P-450 CYP3A - metabolism</topic><topic>diastereomers</topic><topic>Enantiomers</topic><topic>Environmental Exposure</topic><topic>exposure</topic><topic>Fungicides</topic><topic>Fungicides, Industrial - metabolism</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>metabolomics</topic><topic>Metabolomics - methods</topic><topic>Microsomes</topic><topic>Microsomes, Liver - metabolism</topic><topic>Molecular Structure</topic><topic>Oncorhynchus mykiss</topic><topic>Oncorhynchus mykiss - metabolism</topic><topic>Pesticide Residues - analysis</topic><topic>rainbow trout</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stereoisomerism</topic><topic>stereoisomers</topic><topic>stereoselectivity</topic><topic>Structure-Activity Relationship</topic><topic>Transformations</topic><topic>triadimefon</topic><topic>triadimenol</topic><topic>triazoles</topic><topic>Triazoles - metabolism</topic><topic>Trout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenneke, John F.</creatorcontrib><creatorcontrib>Ekman, Drew R.</creatorcontrib><creatorcontrib>Mazur, Chris S.</creatorcontrib><creatorcontrib>Konwick, Brad J.</creatorcontrib><creatorcontrib>Fisk, Aaron T.</creatorcontrib><creatorcontrib>Avants, Jimmy K.</creatorcontrib><creatorcontrib>Garrison, A. Wayne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Chirality (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenneke, John F.</au><au>Ekman, Drew R.</au><au>Mazur, Chris S.</au><au>Konwick, Brad J.</au><au>Fisk, Aaron T.</au><au>Avants, Jimmy K.</au><au>Garrison, A. Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout</atitle><jtitle>Chirality (New York, N.Y.)</jtitle><addtitle>Chirality</addtitle><date>2010-02</date><risdate>2010</risdate><volume>22</volume><issue>2</issue><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0899-0042</issn><eissn>1520-636X</eissn><abstract>Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(−) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19418553</pmid><doi>10.1002/chir.20725</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-0042 |
ispartof | Chirality (New York, N.Y.), 2010-02, Vol.22 (2), p.183-192 |
issn | 0899-0042 1520-636X |
language | eng |
recordid | cdi_proquest_miscellaneous_744614073 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Antifungal Agents - analysis Chirality Chromatography, High Pressure Liquid conazoles Cytochrome P-450 CYP3A - metabolism diastereomers Enantiomers Environmental Exposure exposure Fungicides Fungicides, Industrial - metabolism Metabolism Metabolites metabolomics Metabolomics - methods Microsomes Microsomes, Liver - metabolism Molecular Structure Oncorhynchus mykiss Oncorhynchus mykiss - metabolism Pesticide Residues - analysis rainbow trout Rats Rats, Sprague-Dawley Stereoisomerism stereoisomers stereoselectivity Structure-Activity Relationship Transformations triadimefon triadimenol triazoles Triazoles - metabolism Trout |
title | Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20metabolomics%20and%20in%20vitro%20metabolism%20assays%20for%20investigating%20the%20stereoselective%20transformation%20of%20triadimefon%20in%20rainbow%20trout&rft.jtitle=Chirality%20(New%20York,%20N.Y.)&rft.au=Kenneke,%20John%20F.&rft.date=2010-02&rft.volume=22&rft.issue=2&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0899-0042&rft.eissn=1520-636X&rft_id=info:doi/10.1002/chir.20725&rft_dat=%3Cproquest_cross%3E744614073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744673590&rft_id=info:pmid/19418553&rfr_iscdi=true |