Rectangular mindlin plates on elastic foundations

Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 1989, Vol.31 (9), p.679-692
Hauptverfasser: Kobayashi, Harutoshi, Sonoda, Keiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 9
container_start_page 679
container_title International journal of mechanical sciences
container_volume 31
creator Kobayashi, Harutoshi
Sonoda, Keiichiro
description Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.
doi_str_mv 10.1016/S0020-7403(89)80003-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744565338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740389800037</els_id><sourcerecordid>744565338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKELQV1UkybNYyUy-IIBwcc6pOmNRDLpmLTC_Hs7D2br6m6-cw_nQ-ic4BuCCb99x7jCpWCYXkl1LTHGtBQHaEKkUGVFeHWIJnvkGJ3k_I0xEbimE0TewPYmfg3BpGLhYxt8LJbB9JCLLhYQTO69LVw3xNb0vov5FB05EzKc7e4UfT4-fMyey_nr08vsfl5aymVfyrZquOCKESWJpZRxTljNLFPSMUaxtOCYUNDwxlhCKKVO1QwU54Y3jnM6RZfbv8vU_QyQe73w2UIIJkI3ZC0Yq3lNqRzJekva1OWcwOll8guTVppgvTakN4b0er6WSm8MaTHmLnYNJlsTXDLR-rwPc1VJIaoRu9tiMK799ZB0th6ihdanUZ5uO_9P0R9n1Xhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744565338</pqid></control><display><type>article</type><title>Rectangular mindlin plates on elastic foundations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kobayashi, Harutoshi ; Sonoda, Keiichiro</creator><creatorcontrib>Kobayashi, Harutoshi ; Sonoda, Keiichiro</creatorcontrib><description>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/S0020-7403(89)80003-7</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>deflection ; elasticity ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; numerical analysis ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; supports</subject><ispartof>International journal of mechanical sciences, 1989, Vol.31 (9), p.679-692</ispartof><rights>1989 Pergamon Press plc</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</citedby><cites>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7403(89)80003-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6928772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Harutoshi</creatorcontrib><creatorcontrib>Sonoda, Keiichiro</creatorcontrib><title>Rectangular mindlin plates on elastic foundations</title><title>International journal of mechanical sciences</title><description>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</description><subject>deflection</subject><subject>elasticity</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>numerical analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>supports</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKELQV1UkybNYyUy-IIBwcc6pOmNRDLpmLTC_Hs7D2br6m6-cw_nQ-ic4BuCCb99x7jCpWCYXkl1LTHGtBQHaEKkUGVFeHWIJnvkGJ3k_I0xEbimE0TewPYmfg3BpGLhYxt8LJbB9JCLLhYQTO69LVw3xNb0vov5FB05EzKc7e4UfT4-fMyey_nr08vsfl5aymVfyrZquOCKESWJpZRxTljNLFPSMUaxtOCYUNDwxlhCKKVO1QwU54Y3jnM6RZfbv8vU_QyQe73w2UIIJkI3ZC0Yq3lNqRzJekva1OWcwOll8guTVppgvTakN4b0er6WSm8MaTHmLnYNJlsTXDLR-rwPc1VJIaoRu9tiMK799ZB0th6ihdanUZ5uO_9P0R9n1Xhp</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Kobayashi, Harutoshi</creator><creator>Sonoda, Keiichiro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1989</creationdate><title>Rectangular mindlin plates on elastic foundations</title><author>Kobayashi, Harutoshi ; Sonoda, Keiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>deflection</topic><topic>elasticity</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>numerical analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>supports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Harutoshi</creatorcontrib><creatorcontrib>Sonoda, Keiichiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Harutoshi</au><au>Sonoda, Keiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rectangular mindlin plates on elastic foundations</atitle><jtitle>International journal of mechanical sciences</jtitle><date>1989</date><risdate>1989</risdate><volume>31</volume><issue>9</issue><spage>679</spage><epage>692</epage><pages>679-692</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7403(89)80003-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 1989, Vol.31 (9), p.679-692
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_744565338
source Access via ScienceDirect (Elsevier)
subjects deflection
elasticity
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
numerical analysis
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
supports
title Rectangular mindlin plates on elastic foundations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rectangular%20mindlin%20plates%20on%20elastic%20foundations&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Kobayashi,%20Harutoshi&rft.date=1989&rft.volume=31&rft.issue=9&rft.spage=679&rft.epage=692&rft.pages=679-692&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/S0020-7403(89)80003-7&rft_dat=%3Cproquest_cross%3E744565338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744565338&rft_id=info:pmid/&rft_els_id=S0020740389800037&rfr_iscdi=true