Rectangular mindlin plates on elastic foundations
Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype si...
Gespeichert in:
Veröffentlicht in: | International journal of mechanical sciences 1989, Vol.31 (9), p.679-692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 692 |
---|---|
container_issue | 9 |
container_start_page | 679 |
container_title | International journal of mechanical sciences |
container_volume | 31 |
creator | Kobayashi, Harutoshi Sonoda, Keiichiro |
description | Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory. |
doi_str_mv | 10.1016/S0020-7403(89)80003-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744565338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740389800037</els_id><sourcerecordid>744565338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKELQV1UkybNYyUy-IIBwcc6pOmNRDLpmLTC_Hs7D2br6m6-cw_nQ-ic4BuCCb99x7jCpWCYXkl1LTHGtBQHaEKkUGVFeHWIJnvkGJ3k_I0xEbimE0TewPYmfg3BpGLhYxt8LJbB9JCLLhYQTO69LVw3xNb0vov5FB05EzKc7e4UfT4-fMyey_nr08vsfl5aymVfyrZquOCKESWJpZRxTljNLFPSMUaxtOCYUNDwxlhCKKVO1QwU54Y3jnM6RZfbv8vU_QyQe73w2UIIJkI3ZC0Yq3lNqRzJekva1OWcwOll8guTVppgvTakN4b0er6WSm8MaTHmLnYNJlsTXDLR-rwPc1VJIaoRu9tiMK799ZB0th6ihdanUZ5uO_9P0R9n1Xhp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744565338</pqid></control><display><type>article</type><title>Rectangular mindlin plates on elastic foundations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kobayashi, Harutoshi ; Sonoda, Keiichiro</creator><creatorcontrib>Kobayashi, Harutoshi ; Sonoda, Keiichiro</creatorcontrib><description>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/S0020-7403(89)80003-7</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>deflection ; elasticity ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; numerical analysis ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; supports</subject><ispartof>International journal of mechanical sciences, 1989, Vol.31 (9), p.679-692</ispartof><rights>1989 Pergamon Press plc</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</citedby><cites>FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7403(89)80003-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6928772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, Harutoshi</creatorcontrib><creatorcontrib>Sonoda, Keiichiro</creatorcontrib><title>Rectangular mindlin plates on elastic foundations</title><title>International journal of mechanical sciences</title><description>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</description><subject>deflection</subject><subject>elasticity</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>numerical analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>supports</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKELQV1UkybNYyUy-IIBwcc6pOmNRDLpmLTC_Hs7D2br6m6-cw_nQ-ic4BuCCb99x7jCpWCYXkl1LTHGtBQHaEKkUGVFeHWIJnvkGJ3k_I0xEbimE0TewPYmfg3BpGLhYxt8LJbB9JCLLhYQTO69LVw3xNb0vov5FB05EzKc7e4UfT4-fMyey_nr08vsfl5aymVfyrZquOCKESWJpZRxTljNLFPSMUaxtOCYUNDwxlhCKKVO1QwU54Y3jnM6RZfbv8vU_QyQe73w2UIIJkI3ZC0Yq3lNqRzJekva1OWcwOll8guTVppgvTakN4b0er6WSm8MaTHmLnYNJlsTXDLR-rwPc1VJIaoRu9tiMK799ZB0th6ihdanUZ5uO_9P0R9n1Xhp</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Kobayashi, Harutoshi</creator><creator>Sonoda, Keiichiro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1989</creationdate><title>Rectangular mindlin plates on elastic foundations</title><author>Kobayashi, Harutoshi ; Sonoda, Keiichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8d2b676941981c334661454c498f44308cef479eb6bac11333f954e966a6bf663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>deflection</topic><topic>elasticity</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>numerical analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>supports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Harutoshi</creatorcontrib><creatorcontrib>Sonoda, Keiichiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Harutoshi</au><au>Sonoda, Keiichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rectangular mindlin plates on elastic foundations</atitle><jtitle>International journal of mechanical sciences</jtitle><date>1989</date><risdate>1989</risdate><volume>31</volume><issue>9</issue><spage>679</spage><epage>692</epage><pages>679-692</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>Rectangular plates on Winkler foundations are analysed on the basis of Mindlin's thick plate theory. The plates are simply supported on the two opposite edges and the other two edges may be arbitrarily restrained, e.g. simply supported, clamed or free. Solutions are presented in the Levytype single series forms, of which forms must be distinguished into three different forms depending upon the properties of plate materials and the modulus of foundation. The effects of shear deformation are first showed numerically for the deflections and strees resultants at major points of the plate. Furthermore, the twisting moment and shear force distributions along the edges and centre lines of the plate are illustrated graphically to demonstrate the principal difference between Mindlin's plate theory and classical thin plate theory.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7403(89)80003-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7403 |
ispartof | International journal of mechanical sciences, 1989, Vol.31 (9), p.679-692 |
issn | 0020-7403 1879-2162 |
language | eng |
recordid | cdi_proquest_miscellaneous_744565338 |
source | Access via ScienceDirect (Elsevier) |
subjects | deflection elasticity Exact sciences and technology Fundamental areas of phenomenology (including applications) numerical analysis Physics Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics supports |
title | Rectangular mindlin plates on elastic foundations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rectangular%20mindlin%20plates%20on%20elastic%20foundations&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Kobayashi,%20Harutoshi&rft.date=1989&rft.volume=31&rft.issue=9&rft.spage=679&rft.epage=692&rft.pages=679-692&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/S0020-7403(89)80003-7&rft_dat=%3Cproquest_cross%3E744565338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744565338&rft_id=info:pmid/&rft_els_id=S0020740389800037&rfr_iscdi=true |