A new finite-element technique for modelling stable crack growth

This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 1986, Vol.23 (1), p.105-118
Hauptverfasser: Hoff, R., Rubin, C.A., Hahn, G.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 105
container_title Engineering fracture mechanics
container_volume 23
creator Hoff, R.
Rubin, C.A.
Hahn, G.T.
description This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.
doi_str_mv 10.1016/0013-7944(86)90180-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744558971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0013794486901803</els_id><sourcerecordid>24167280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBz9AxdZiI9FtDr9zEYcxBcIbnTddLorTmse2h0V_97EGVy6KijOvVUcQvYpnFKg8gyAslyVnB9reVIC1ZCzDTKjWo1rRsUmmf0h22QnpRcAUFLDjFwssg6_sjp0YcAcG2yxG7IB3bIL7x-Y1X3M2t5j04TuOUuDrRrMXLTuNXuO_dew3CVbtW0S7q3nnDxdXz1e3ub3Dzd3l4v73LFSDnlRKSsQSuRQOC8rYFxVXjpwjBWCMSe89DWColWBCj3VtWDao68ErUrP2ZwcrXrfYj8-lgbThuTGv2yH_UcyinMhdKnoSB7-SxacSlVoGEG-Al3sU4pYm7cYWhu_DQUziTWTNTNZM1qaX7GGjbGDdb9NzjZ1tJ0L6S-rldAFn9rPVxiOVj4DRpNcwM6hDxHdYHwf_r_zA1SVi4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24167280</pqid></control><display><type>article</type><title>A new finite-element technique for modelling stable crack growth</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</creator><creatorcontrib>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</creatorcontrib><description>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/0013-7944(86)90180-3</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>crack propagation ; ductility ; Exact sciences and technology ; finite element method ; fracture ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; materials testing ; Physics ; simulation ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 1986, Vol.23 (1), p.105-118</ispartof><rights>1986</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</citedby><cites>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0013-7944(86)90180-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8758240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoff, R.</creatorcontrib><creatorcontrib>Rubin, C.A.</creatorcontrib><creatorcontrib>Hahn, G.T.</creatorcontrib><title>A new finite-element technique for modelling stable crack growth</title><title>Engineering fracture mechanics</title><description>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</description><subject>crack propagation</subject><subject>ductility</subject><subject>Exact sciences and technology</subject><subject>finite element method</subject><subject>fracture</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>materials testing</subject><subject>Physics</subject><subject>simulation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBz9AxdZiI9FtDr9zEYcxBcIbnTddLorTmse2h0V_97EGVy6KijOvVUcQvYpnFKg8gyAslyVnB9reVIC1ZCzDTKjWo1rRsUmmf0h22QnpRcAUFLDjFwssg6_sjp0YcAcG2yxG7IB3bIL7x-Y1X3M2t5j04TuOUuDrRrMXLTuNXuO_dew3CVbtW0S7q3nnDxdXz1e3ub3Dzd3l4v73LFSDnlRKSsQSuRQOC8rYFxVXjpwjBWCMSe89DWColWBCj3VtWDao68ErUrP2ZwcrXrfYj8-lgbThuTGv2yH_UcyinMhdKnoSB7-SxacSlVoGEG-Al3sU4pYm7cYWhu_DQUziTWTNTNZM1qaX7GGjbGDdb9NzjZ1tJ0L6S-rldAFn9rPVxiOVj4DRpNcwM6hDxHdYHwf_r_zA1SVi4U</recordid><startdate>1986</startdate><enddate>1986</enddate><creator>Hoff, R.</creator><creator>Rubin, C.A.</creator><creator>Hahn, G.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1986</creationdate><title>A new finite-element technique for modelling stable crack growth</title><author>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>crack propagation</topic><topic>ductility</topic><topic>Exact sciences and technology</topic><topic>finite element method</topic><topic>fracture</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>materials testing</topic><topic>Physics</topic><topic>simulation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoff, R.</creatorcontrib><creatorcontrib>Rubin, C.A.</creatorcontrib><creatorcontrib>Hahn, G.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoff, R.</au><au>Rubin, C.A.</au><au>Hahn, G.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new finite-element technique for modelling stable crack growth</atitle><jtitle>Engineering fracture mechanics</jtitle><date>1986</date><risdate>1986</risdate><volume>23</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0013-7944(86)90180-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 1986, Vol.23 (1), p.105-118
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_744558971
source Elsevier ScienceDirect Journals Complete
subjects crack propagation
ductility
Exact sciences and technology
finite element method
fracture
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
materials testing
Physics
simulation
Solid mechanics
Structural and continuum mechanics
title A new finite-element technique for modelling stable crack growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20finite-element%20technique%20for%20modelling%20stable%20crack%20growth&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Hoff,%20R.&rft.date=1986&rft.volume=23&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/0013-7944(86)90180-3&rft_dat=%3Cproquest_cross%3E24167280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24167280&rft_id=info:pmid/&rft_els_id=0013794486901803&rfr_iscdi=true