A new finite-element technique for modelling stable crack growth
This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 1986, Vol.23 (1), p.105-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Engineering fracture mechanics |
container_volume | 23 |
creator | Hoff, R. Rubin, C.A. Hahn, G.T. |
description | This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper. |
doi_str_mv | 10.1016/0013-7944(86)90180-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744558971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0013794486901803</els_id><sourcerecordid>24167280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBz9AxdZiI9FtDr9zEYcxBcIbnTddLorTmse2h0V_97EGVy6KijOvVUcQvYpnFKg8gyAslyVnB9reVIC1ZCzDTKjWo1rRsUmmf0h22QnpRcAUFLDjFwssg6_sjp0YcAcG2yxG7IB3bIL7x-Y1X3M2t5j04TuOUuDrRrMXLTuNXuO_dew3CVbtW0S7q3nnDxdXz1e3ub3Dzd3l4v73LFSDnlRKSsQSuRQOC8rYFxVXjpwjBWCMSe89DWColWBCj3VtWDao68ErUrP2ZwcrXrfYj8-lgbThuTGv2yH_UcyinMhdKnoSB7-SxacSlVoGEG-Al3sU4pYm7cYWhu_DQUziTWTNTNZM1qaX7GGjbGDdb9NzjZ1tJ0L6S-rldAFn9rPVxiOVj4DRpNcwM6hDxHdYHwf_r_zA1SVi4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24167280</pqid></control><display><type>article</type><title>A new finite-element technique for modelling stable crack growth</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</creator><creatorcontrib>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</creatorcontrib><description>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/0013-7944(86)90180-3</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>crack propagation ; ductility ; Exact sciences and technology ; finite element method ; fracture ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; materials testing ; Physics ; simulation ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 1986, Vol.23 (1), p.105-118</ispartof><rights>1986</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</citedby><cites>FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0013-7944(86)90180-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8758240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoff, R.</creatorcontrib><creatorcontrib>Rubin, C.A.</creatorcontrib><creatorcontrib>Hahn, G.T.</creatorcontrib><title>A new finite-element technique for modelling stable crack growth</title><title>Engineering fracture mechanics</title><description>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</description><subject>crack propagation</subject><subject>ductility</subject><subject>Exact sciences and technology</subject><subject>finite element method</subject><subject>fracture</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>materials testing</subject><subject>Physics</subject><subject>simulation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRcBz9AxdZiI9FtDr9zEYcxBcIbnTddLorTmse2h0V_97EGVy6KijOvVUcQvYpnFKg8gyAslyVnB9reVIC1ZCzDTKjWo1rRsUmmf0h22QnpRcAUFLDjFwssg6_sjp0YcAcG2yxG7IB3bIL7x-Y1X3M2t5j04TuOUuDrRrMXLTuNXuO_dew3CVbtW0S7q3nnDxdXz1e3ub3Dzd3l4v73LFSDnlRKSsQSuRQOC8rYFxVXjpwjBWCMSe89DWColWBCj3VtWDao68ErUrP2ZwcrXrfYj8-lgbThuTGv2yH_UcyinMhdKnoSB7-SxacSlVoGEG-Al3sU4pYm7cYWhu_DQUziTWTNTNZM1qaX7GGjbGDdb9NzjZ1tJ0L6S-rldAFn9rPVxiOVj4DRpNcwM6hDxHdYHwf_r_zA1SVi4U</recordid><startdate>1986</startdate><enddate>1986</enddate><creator>Hoff, R.</creator><creator>Rubin, C.A.</creator><creator>Hahn, G.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1986</creationdate><title>A new finite-element technique for modelling stable crack growth</title><author>Hoff, R. ; Rubin, C.A. ; Hahn, G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2b7a5e09e402cd6b0347bd6c0c332533c5d6dfe071b2e7ed18f538dedb51b9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>crack propagation</topic><topic>ductility</topic><topic>Exact sciences and technology</topic><topic>finite element method</topic><topic>fracture</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>materials testing</topic><topic>Physics</topic><topic>simulation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoff, R.</creatorcontrib><creatorcontrib>Rubin, C.A.</creatorcontrib><creatorcontrib>Hahn, G.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoff, R.</au><au>Rubin, C.A.</au><au>Hahn, G.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new finite-element technique for modelling stable crack growth</atitle><jtitle>Engineering fracture mechanics</jtitle><date>1986</date><risdate>1986</risdate><volume>23</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>This paper presents a new technique for simulating crack extension in conjunction with the finite-element method. The technique uses spring and gap elements to control the motion of nodes on the crack plane. These elements are available in many proprietary finite-element codes, thereby obviating the need for a user-written finite-element code. Numerical results for stable crack growth are in excellent agreement with corresponding experiments. The technique is also applied to rapid fracture in ductile materials, as discussed in a companion paper.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0013-7944(86)90180-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 1986, Vol.23 (1), p.105-118 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_proquest_miscellaneous_744558971 |
source | Elsevier ScienceDirect Journals Complete |
subjects | crack propagation ductility Exact sciences and technology finite element method fracture Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) materials testing Physics simulation Solid mechanics Structural and continuum mechanics |
title | A new finite-element technique for modelling stable crack growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20finite-element%20technique%20for%20modelling%20stable%20crack%20growth&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Hoff,%20R.&rft.date=1986&rft.volume=23&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/0013-7944(86)90180-3&rft_dat=%3Cproquest_cross%3E24167280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24167280&rft_id=info:pmid/&rft_els_id=0013794486901803&rfr_iscdi=true |