Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance

The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2010-02, Vol.20 (4), p.617-623
Hauptverfasser: Tian, Li, Zou, Hongli, Fu, Junxiang, Yang, Xianfeng, Wang, Yi, Guo, Hongliang, Fu, Xionghui, Liang, Chaolun, Wu, Mingmei, Shen, Pei Kang, Gao, Qiuming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 4
container_start_page 617
container_title Advanced functional materials
container_volume 20
creator Tian, Li
Zou, Hongli
Fu, Junxiang
Yang, Xianfeng
Wang, Yi
Guo, Hongliang
Fu, Xionghui
Liang, Chaolun
Wu, Mingmei
Shen, Pei Kang
Gao, Qiuming
description The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X‐ray diffraction (XRD), electron microscopy—scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer [0001] epitaxial growth direction of hexagonal α‐Co(OH)2 nanobelts due to the structural matching of [0001] α‐Co(OH)2//[111] Co3O4. The surface‐areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of α‐Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge–discharge performance can be optimized. In the voltage range of 0.0–3.0 V versus Li+/Li at 40 mA g−1, reversible capacities of a sample consisting of mesoporous quasi‐single‐crystalline Co3O4 nanobelts can reach up to 1400 mA h g−1, much larger than the theoretical capacity of bulk Co3O4 (892 mA h g−1). Porous quasi‐single‐crystalline nanobelts comprising textured spinel Co3O4 nanowalls are fabricated via a versatile topotactic transition route from layered hydrotalcite‐structured α‐Co(OH)2. The synthesis is made possible by the structural match between (0001) Co(OH)2 and (111) Co3O4 planes.
doi_str_mv 10.1002/adfm.200901503
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_743773660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743773660</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2053-e168e5c39f156373008a83a0cdc475a7b63070a3ddbe6153ad81df19ffd836943</originalsourceid><addsrcrecordid>eNo9kEFv1DAQRiMEEqVw5ewbp5TxTmInx7K0C1W7C6UIbtasM6EGJ97aXsr2wl8n1aI9zTfS90aaVxSvJZxIgNlb6vrhZAbQgqwBnxRHUklVIsyap4csvz8vXqT0E0BqjdVR8fcmbEImm50V8zD-5phcGMV12GYWOYgrTlMhhm0Sn7eUXPnFjT88l_O4S5m8dyNPHK4qsaQxrNnnJO5dvhWrTXaDe6C1Z3Hm2eYY7C0PzpIXnzj2IQ40Wn5ZPOvJJ371fx4XX8_PbuYfysvV4uP89LJ0M6ixZKkari22vawVagRoqEEC29lK16TXCkEDYdetWckaqWtk18u277sGVVvhcfFmf3cTw92WUzaDS5a9p5Gn54yucBKiFEzNdt-8d553ZhPdQHFnJJhHy-bRsjlYNqfvz68O28SWe9alzH8OLMVfRmnUtfm2XJiL63dqqReNafAfLu2Eow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743773660</pqid></control><display><type>article</type><title>Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Li ; Zou, Hongli ; Fu, Junxiang ; Yang, Xianfeng ; Wang, Yi ; Guo, Hongliang ; Fu, Xionghui ; Liang, Chaolun ; Wu, Mingmei ; Shen, Pei Kang ; Gao, Qiuming</creator><creatorcontrib>Tian, Li ; Zou, Hongli ; Fu, Junxiang ; Yang, Xianfeng ; Wang, Yi ; Guo, Hongliang ; Fu, Xionghui ; Liang, Chaolun ; Wu, Mingmei ; Shen, Pei Kang ; Gao, Qiuming</creatorcontrib><description>The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X‐ray diffraction (XRD), electron microscopy—scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer [0001] epitaxial growth direction of hexagonal α‐Co(OH)2 nanobelts due to the structural matching of [0001] α‐Co(OH)2//[111] Co3O4. The surface‐areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of α‐Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge–discharge performance can be optimized. In the voltage range of 0.0–3.0 V versus Li+/Li at 40 mA g−1, reversible capacities of a sample consisting of mesoporous quasi‐single‐crystalline Co3O4 nanobelts can reach up to 1400 mA h g−1, much larger than the theoretical capacity of bulk Co3O4 (892 mA h g−1). Porous quasi‐single‐crystalline nanobelts comprising textured spinel Co3O4 nanowalls are fabricated via a versatile topotactic transition route from layered hydrotalcite‐structured α‐Co(OH)2. The synthesis is made possible by the structural match between (0001) Co(OH)2 and (111) Co3O4 planes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200901503</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Batteries ; Cobalt oxide ; Hydrotalcite ; Layered Materials ; Nanobelts ; Porous Materials ; Spinels</subject><ispartof>Advanced functional materials, 2010-02, Vol.20 (4), p.617-623</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200901503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200901503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Tian, Li</creatorcontrib><creatorcontrib>Zou, Hongli</creatorcontrib><creatorcontrib>Fu, Junxiang</creatorcontrib><creatorcontrib>Yang, Xianfeng</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Guo, Hongliang</creatorcontrib><creatorcontrib>Fu, Xionghui</creatorcontrib><creatorcontrib>Liang, Chaolun</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><creatorcontrib>Shen, Pei Kang</creatorcontrib><creatorcontrib>Gao, Qiuming</creatorcontrib><title>Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X‐ray diffraction (XRD), electron microscopy—scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer [0001] epitaxial growth direction of hexagonal α‐Co(OH)2 nanobelts due to the structural matching of [0001] α‐Co(OH)2//[111] Co3O4. The surface‐areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of α‐Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge–discharge performance can be optimized. In the voltage range of 0.0–3.0 V versus Li+/Li at 40 mA g−1, reversible capacities of a sample consisting of mesoporous quasi‐single‐crystalline Co3O4 nanobelts can reach up to 1400 mA h g−1, much larger than the theoretical capacity of bulk Co3O4 (892 mA h g−1). Porous quasi‐single‐crystalline nanobelts comprising textured spinel Co3O4 nanowalls are fabricated via a versatile topotactic transition route from layered hydrotalcite‐structured α‐Co(OH)2. The synthesis is made possible by the structural match between (0001) Co(OH)2 and (111) Co3O4 planes.</description><subject>Batteries</subject><subject>Cobalt oxide</subject><subject>Hydrotalcite</subject><subject>Layered Materials</subject><subject>Nanobelts</subject><subject>Porous Materials</subject><subject>Spinels</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kEFv1DAQRiMEEqVw5ewbp5TxTmInx7K0C1W7C6UIbtasM6EGJ97aXsr2wl8n1aI9zTfS90aaVxSvJZxIgNlb6vrhZAbQgqwBnxRHUklVIsyap4csvz8vXqT0E0BqjdVR8fcmbEImm50V8zD-5phcGMV12GYWOYgrTlMhhm0Sn7eUXPnFjT88l_O4S5m8dyNPHK4qsaQxrNnnJO5dvhWrTXaDe6C1Z3Hm2eYY7C0PzpIXnzj2IQ40Wn5ZPOvJJ371fx4XX8_PbuYfysvV4uP89LJ0M6ixZKkari22vawVagRoqEEC29lK16TXCkEDYdetWckaqWtk18u277sGVVvhcfFmf3cTw92WUzaDS5a9p5Gn54yucBKiFEzNdt-8d553ZhPdQHFnJJhHy-bRsjlYNqfvz68O28SWe9alzH8OLMVfRmnUtfm2XJiL63dqqReNafAfLu2Eow</recordid><startdate>20100222</startdate><enddate>20100222</enddate><creator>Tian, Li</creator><creator>Zou, Hongli</creator><creator>Fu, Junxiang</creator><creator>Yang, Xianfeng</creator><creator>Wang, Yi</creator><creator>Guo, Hongliang</creator><creator>Fu, Xionghui</creator><creator>Liang, Chaolun</creator><creator>Wu, Mingmei</creator><creator>Shen, Pei Kang</creator><creator>Gao, Qiuming</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100222</creationdate><title>Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance</title><author>Tian, Li ; Zou, Hongli ; Fu, Junxiang ; Yang, Xianfeng ; Wang, Yi ; Guo, Hongliang ; Fu, Xionghui ; Liang, Chaolun ; Wu, Mingmei ; Shen, Pei Kang ; Gao, Qiuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2053-e168e5c39f156373008a83a0cdc475a7b63070a3ddbe6153ad81df19ffd836943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Batteries</topic><topic>Cobalt oxide</topic><topic>Hydrotalcite</topic><topic>Layered Materials</topic><topic>Nanobelts</topic><topic>Porous Materials</topic><topic>Spinels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Li</creatorcontrib><creatorcontrib>Zou, Hongli</creatorcontrib><creatorcontrib>Fu, Junxiang</creatorcontrib><creatorcontrib>Yang, Xianfeng</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Guo, Hongliang</creatorcontrib><creatorcontrib>Fu, Xionghui</creatorcontrib><creatorcontrib>Liang, Chaolun</creatorcontrib><creatorcontrib>Wu, Mingmei</creatorcontrib><creatorcontrib>Shen, Pei Kang</creatorcontrib><creatorcontrib>Gao, Qiuming</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Li</au><au>Zou, Hongli</au><au>Fu, Junxiang</au><au>Yang, Xianfeng</au><au>Wang, Yi</au><au>Guo, Hongliang</au><au>Fu, Xionghui</au><au>Liang, Chaolun</au><au>Wu, Mingmei</au><au>Shen, Pei Kang</au><au>Gao, Qiuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2010-02-22</date><risdate>2010</risdate><volume>20</volume><issue>4</issue><spage>617</spage><epage>623</epage><pages>617-623</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X‐ray diffraction (XRD), electron microscopy—scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer [0001] epitaxial growth direction of hexagonal α‐Co(OH)2 nanobelts due to the structural matching of [0001] α‐Co(OH)2//[111] Co3O4. The surface‐areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of α‐Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge–discharge performance can be optimized. In the voltage range of 0.0–3.0 V versus Li+/Li at 40 mA g−1, reversible capacities of a sample consisting of mesoporous quasi‐single‐crystalline Co3O4 nanobelts can reach up to 1400 mA h g−1, much larger than the theoretical capacity of bulk Co3O4 (892 mA h g−1). Porous quasi‐single‐crystalline nanobelts comprising textured spinel Co3O4 nanowalls are fabricated via a versatile topotactic transition route from layered hydrotalcite‐structured α‐Co(OH)2. The synthesis is made possible by the structural match between (0001) Co(OH)2 and (111) Co3O4 planes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200901503</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2010-02, Vol.20 (4), p.617-623
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_743773660
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Cobalt oxide
Hydrotalcite
Layered Materials
Nanobelts
Porous Materials
Spinels
title Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topotactic%20Conversion%20Route%20to%20Mesoporous%20Quasi-Single-Crystalline%20Co3O4%20Nanobelts%20with%20Optimizable%20Electrochemical%20Performance&rft.jtitle=Advanced%20functional%20materials&rft.au=Tian,%20Li&rft.date=2010-02-22&rft.volume=20&rft.issue=4&rft.spage=617&rft.epage=623&rft.pages=617-623&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200901503&rft_dat=%3Cproquest_wiley%3E743773660%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743773660&rft_id=info:pmid/&rfr_iscdi=true