The Average Value Inequality in Sequential Effect Algebras

A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2010-05, Vol.26 (5), p.831-836
Hauptverfasser: Shen, Jun, De Wu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 5
container_start_page 831
container_title Acta mathematica Sinica. English series
container_volume 26
creator Shen, Jun
De Wu, Jun
description A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively.
doi_str_mv 10.1007/s10114-009-8683-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743768995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33874988</cqvip_id><sourcerecordid>2028176521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e776f680124bc34b538796a942266671bb9b297afe112fe2a5c773e9956445b83</originalsourceid><addsrcrecordid>eNp9kM1Kw0AYRYMoWKsP4C64cRWd_x93pVQtFFxY3Q6T4Zs0NU3amVTo2zslBcGFq_kGzr1cTpbdYvSAEZKPESOMWYGQLpRQtOBn2QgzqgspsDw_3YpjcZldxbhGiHONxCh7Wq4gn3xDsBXkn7bZQz5vYbe3Td0f8rrN39MH2r62TT7zHlyfT5oKymDjdXbhbRPh5vSOs4_n2XL6WizeXubTyaJwVLK-ACmFFwphwkpHWcmpklpYzQgRQkhclrokWloPGBMPxHInJQWtuWCMl4qOs_uhdxu6tCX2ZlNHB01jW-j20UhGpVCJT-TdH3Ld7UObxhlCBeOcEpIgPEAudDEG8GYb6o0NB4ORObo0g0uTXJqjS3MsJkMmJratIPwW_xc6rXGrrq12KWdK67583YChSQLTStEfJeJ_UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236455322</pqid></control><display><type>article</type><title>The Average Value Inequality in Sequential Effect Algebras</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Shen, Jun ; De Wu, Jun</creator><creatorcontrib>Shen, Jun ; De Wu, Jun</creatorcontrib><description>A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-009-8683-5</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Studies ; 均值不等式 ; 效应代数 ; 测量理论 ; 物理性能</subject><ispartof>Acta mathematica Sinica. English series, 2010-05, Vol.26 (5), p.831-836</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer Berlin Heidelberg 2010</rights><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e776f680124bc34b538796a942266671bb9b297afe112fe2a5c773e9956445b83</citedby><cites>FETCH-LOGICAL-c374t-e776f680124bc34b538796a942266671bb9b297afe112fe2a5c773e9956445b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-009-8683-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-009-8683-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>De Wu, Jun</creatorcontrib><title>The Average Value Inequality in Sequential Effect Algebras</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Studies</subject><subject>均值不等式</subject><subject>效应代数</subject><subject>测量理论</subject><subject>物理性能</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1Kw0AYRYMoWKsP4C64cRWd_x93pVQtFFxY3Q6T4Zs0NU3amVTo2zslBcGFq_kGzr1cTpbdYvSAEZKPESOMWYGQLpRQtOBn2QgzqgspsDw_3YpjcZldxbhGiHONxCh7Wq4gn3xDsBXkn7bZQz5vYbe3Td0f8rrN39MH2r62TT7zHlyfT5oKymDjdXbhbRPh5vSOs4_n2XL6WizeXubTyaJwVLK-ACmFFwphwkpHWcmpklpYzQgRQkhclrokWloPGBMPxHInJQWtuWCMl4qOs_uhdxu6tCX2ZlNHB01jW-j20UhGpVCJT-TdH3Ld7UObxhlCBeOcEpIgPEAudDEG8GYb6o0NB4ORObo0g0uTXJqjS3MsJkMmJratIPwW_xc6rXGrrq12KWdK67583YChSQLTStEfJeJ_UA</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Shen, Jun</creator><creator>De Wu, Jun</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100501</creationdate><title>The Average Value Inequality in Sequential Effect Algebras</title><author>Shen, Jun ; De Wu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e776f680124bc34b538796a942266671bb9b297afe112fe2a5c773e9956445b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Studies</topic><topic>均值不等式</topic><topic>效应代数</topic><topic>测量理论</topic><topic>物理性能</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun</creatorcontrib><creatorcontrib>De Wu, Jun</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun</au><au>De Wu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Average Value Inequality in Sequential Effect Algebras</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>26</volume><issue>5</issue><spage>831</spage><epage>836</epage><pages>831-836</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-009-8683-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2010-05, Vol.26 (5), p.831-836
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_miscellaneous_743768995
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Algebra
Mathematical analysis
Mathematics
Mathematics and Statistics
Studies
均值不等式
效应代数
测量理论
物理性能
title The Average Value Inequality in Sequential Effect Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Average%20Value%20Inequality%20in%20Sequential%20Effect%20Algebras&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Shen,%20Jun&rft.date=2010-05-01&rft.volume=26&rft.issue=5&rft.spage=831&rft.epage=836&rft.pages=831-836&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-009-8683-5&rft_dat=%3Cproquest_cross%3E2028176521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236455322&rft_id=info:pmid/&rft_cqvip_id=33874988&rfr_iscdi=true