Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping

We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2010-04, Vol.181 (1), p.577-590
Hauptverfasser: De Basabe, Jonás D., Sen, Mrinal K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 1
container_start_page 577
container_title Geophysical journal international
container_volume 181
creator De Basabe, Jonás D.
Sen, Mrinal K.
description We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively.
doi_str_mv 10.1111/j.1365-246X.2010.04536.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743752761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743752761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5116-742a3efa08d66374fc877dc81594661c16387ff77bc5f896f5fb0f68f71d9c8d3</originalsourceid><addsrcrecordid>eNqNkE1PGzEQhi1UJFLof_Ctp03t-DOHHlpEAwi1Qnwo6sVyvOPE6WZ3sU2T_Pt6SYU44otfjecZjR-EMCVjWs6X9ZgyKaoJl_PxhJQq4YLJ8e4IjV4fPqARmQpZCU7mJ-hjSmtCKKdcj1C8y3YRmpD3uPM4rwCvwnJVdbGGiH1oQwYMDWygzQn7LmLruueUg8MlQ2Nf4tb-BdzHrrdLm0PX4m3Iq7eDctgAThn6PrTLM3TsbZPg0__7FD38uLg_v6xufs2uzr_dVFZQKivFJ5aBt0TXUjLFvdNK1U5TMeVSUkcl08p7pRZOeD2VXvgF8VJ7Reup0zU7RZ8Pc8tmT8-QstmE5KBpbAvlD0ZxpsRESVo69aHTxS6lCN70MWxs3BtKzGDZrM0g0wwyzWDZvFg2u4J-PaDb0MD-3ZyZXV8NqfDVgQ9Fz-6Vt_GPkarsZy7nv80j0z-_X99Jc8v-ASGFlM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743752761</pqid></control><display><type>article</type><title>Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Basabe, Jonás D. ; Sen, Mrinal K.</creator><creatorcontrib>De Basabe, Jonás D. ; Sen, Mrinal K.</creatorcontrib><description>We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1111/j.1365-246X.2010.04536.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computational seismology ; Numerical approximations and analysis ; Numerical solutions ; Wave propagation</subject><ispartof>Geophysical journal international, 2010-04, Vol.181 (1), p.577-590</ispartof><rights>2010 The Authors Journal compilation © 2010 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5116-742a3efa08d66374fc877dc81594661c16387ff77bc5f896f5fb0f68f71d9c8d3</citedby><cites>FETCH-LOGICAL-a5116-742a3efa08d66374fc877dc81594661c16387ff77bc5f896f5fb0f68f71d9c8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-246X.2010.04536.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-246X.2010.04536.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>De Basabe, Jonás D.</creatorcontrib><creatorcontrib>Sen, Mrinal K.</creatorcontrib><title>Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively.</description><subject>Computational seismology</subject><subject>Numerical approximations and analysis</subject><subject>Numerical solutions</subject><subject>Wave propagation</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PGzEQhi1UJFLof_Ctp03t-DOHHlpEAwi1Qnwo6sVyvOPE6WZ3sU2T_Pt6SYU44otfjecZjR-EMCVjWs6X9ZgyKaoJl_PxhJQq4YLJ8e4IjV4fPqARmQpZCU7mJ-hjSmtCKKdcj1C8y3YRmpD3uPM4rwCvwnJVdbGGiH1oQwYMDWygzQn7LmLruueUg8MlQ2Nf4tb-BdzHrrdLm0PX4m3Iq7eDctgAThn6PrTLM3TsbZPg0__7FD38uLg_v6xufs2uzr_dVFZQKivFJ5aBt0TXUjLFvdNK1U5TMeVSUkcl08p7pRZOeD2VXvgF8VJ7Reup0zU7RZ8Pc8tmT8-QstmE5KBpbAvlD0ZxpsRESVo69aHTxS6lCN70MWxs3BtKzGDZrM0g0wwyzWDZvFg2u4J-PaDb0MD-3ZyZXV8NqfDVgQ9Fz-6Vt_GPkarsZy7nv80j0z-_X99Jc8v-ASGFlM0</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>De Basabe, Jonás D.</creator><creator>Sen, Mrinal K.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201004</creationdate><title>Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping</title><author>De Basabe, Jonás D. ; Sen, Mrinal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5116-742a3efa08d66374fc877dc81594661c16387ff77bc5f896f5fb0f68f71d9c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational seismology</topic><topic>Numerical approximations and analysis</topic><topic>Numerical solutions</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Basabe, Jonás D.</creatorcontrib><creatorcontrib>Sen, Mrinal K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Basabe, Jonás D.</au><au>Sen, Mrinal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping</atitle><jtitle>Geophysical journal international</jtitle><addtitle>Geophys. J. Int</addtitle><date>2010-04</date><risdate>2010</risdate><volume>181</volume><issue>1</issue><spage>577</spage><epage>590</epage><pages>577-590</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>We investigate the stability of some high-order finite element methods, namely the spectral element method and the interior-penalty discontinuous Galerkin method (IP-DGM), for acoustic or elastic wave propagation that have become increasingly popular in the recent past. We consider the Lax-Wendroff method (LWM) for time stepping and show that it allows for a larger time step than the classical leap-frog finite difference method, with higher-order accuracy. In particular the fourth-order LWM allows for a time step 73 per cent larger than that of the leap-frog method; the computational cost is approximately double per time step, but the larger time step partially compensates for this additional cost. Necessary, but not sufficient, stability conditions are given for the mentioned methods for orders up to 10 in space and time. The stability conditions for IP-DGM are approximately 20 and 60 per cent more restrictive than those for SEM in the acoustic and elastic cases, respectively.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-246X.2010.04536.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2010-04, Vol.181 (1), p.577-590
issn 0956-540X
1365-246X
language eng
recordid cdi_proquest_miscellaneous_743752761
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete
subjects Computational seismology
Numerical approximations and analysis
Numerical solutions
Wave propagation
title Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20high-order%20finite%20elements%20for%20acoustic%20or%20elastic%20wave%20propagation%20with%20high-order%20time%20stepping&rft.jtitle=Geophysical%20journal%20international&rft.au=De%20Basabe,%20Jon%C3%A1s%20D.&rft.date=2010-04&rft.volume=181&rft.issue=1&rft.spage=577&rft.epage=590&rft.pages=577-590&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1111/j.1365-246X.2010.04536.x&rft_dat=%3Cproquest_cross%3E743752761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743752761&rft_id=info:pmid/&rfr_iscdi=true