Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching
We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2010-04, Vol.32 (4), p.604-618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 4 |
container_start_page | 604 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 32 |
creator | Zhe Lin Davis, L.S. |
description | We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets. |
doi_str_mv | 10.1109/TPAMI.2009.204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_743751234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5374413</ieee_id><sourcerecordid>875019372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-d899f6dca54a56a001bb3742c90d2dbbe95f8255a67f87161d06530fa808af1c3</originalsourceid><addsrcrecordid>eNqFkctP3EAMxkdVq7LQXntBQhGXnrL1vDIzRx6FRQIVie05ciYOBOWxnUkq9b9nlgUOvXCxJfvnT7Y_xr5xWHIO7sf69uTmaikAXArqA1twJ10utXQf2QJ4IXJrhd1j-zE-AnClQX5mewKEUJzbBVvfPeCG8lOMVGerucchO6eJ_NSOQ4ZDnd3RfU_DhM-Fvy1mq5YCBv_QeuyyWwxTvqZ-0-FE2Q1OqT7cf2GfGuwifX3JB-z3xc_12Sq__nV5dXZynXtl-JTX1rmmqD1qhbrAtF5VSaOEd1CLuqrI6cYKrbEwjTW84DUUWkKDFiw23MsD9n2nuwnjn5niVPZt9NR1ONA4x9IaDekfRrxLGiWN5kKq90kppYGC20Qe_0c-jnMY0sGl1YW2CtRWbrmDfBhjDNSUm9D2GP6VHMqtg-Wzg-XWwRS2A0cvqnPVU_2Gv1qWgMMd0BLRW1unxyku5RNE_p0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856584044</pqid></control><display><type>article</type><title>Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Zhe Lin ; Davis, L.S.</creator><creatorcontrib>Zhe Lin ; Davis, L.S.</creatorcontrib><description>We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2009.204</identifier><identifier>PMID: 20224118</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Biological system modeling ; Computer vision ; Crowding ; Decision Trees ; Deformable models ; Detectors ; Feature extraction ; Generic human detector ; hierarchical part-template matching ; Human ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Iterative methods ; Matching ; occlusion analysis ; part-template tree ; Pattern Recognition, Automated - methods ; pose-adaptive descriptor ; Posture - physiology ; Robustness ; Segmentation ; Shape ; Training data ; Trees</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-04, Vol.32 (4), p.604-618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-d899f6dca54a56a001bb3742c90d2dbbe95f8255a67f87161d06530fa808af1c3</citedby><cites>FETCH-LOGICAL-c471t-d899f6dca54a56a001bb3742c90d2dbbe95f8255a67f87161d06530fa808af1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5374413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5374413$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20224118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Davis, L.S.</creatorcontrib><title>Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological system modeling</subject><subject>Computer vision</subject><subject>Crowding</subject><subject>Decision Trees</subject><subject>Deformable models</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Generic human detector</subject><subject>hierarchical part-template matching</subject><subject>Human</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Matching</subject><subject>occlusion analysis</subject><subject>part-template tree</subject><subject>Pattern Recognition, Automated - methods</subject><subject>pose-adaptive descriptor</subject><subject>Posture - physiology</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Training data</subject><subject>Trees</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctP3EAMxkdVq7LQXntBQhGXnrL1vDIzRx6FRQIVie05ciYOBOWxnUkq9b9nlgUOvXCxJfvnT7Y_xr5xWHIO7sf69uTmaikAXArqA1twJ10utXQf2QJ4IXJrhd1j-zE-AnClQX5mewKEUJzbBVvfPeCG8lOMVGerucchO6eJ_NSOQ4ZDnd3RfU_DhM-Fvy1mq5YCBv_QeuyyWwxTvqZ-0-FE2Q1OqT7cf2GfGuwifX3JB-z3xc_12Sq__nV5dXZynXtl-JTX1rmmqD1qhbrAtF5VSaOEd1CLuqrI6cYKrbEwjTW84DUUWkKDFiw23MsD9n2nuwnjn5niVPZt9NR1ONA4x9IaDekfRrxLGiWN5kKq90kppYGC20Qe_0c-jnMY0sGl1YW2CtRWbrmDfBhjDNSUm9D2GP6VHMqtg-Wzg-XWwRS2A0cvqnPVU_2Gv1qWgMMd0BLRW1unxyku5RNE_p0o</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Zhe Lin</creator><creator>Davis, L.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201004</creationdate><title>Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching</title><author>Zhe Lin ; Davis, L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-d899f6dca54a56a001bb3742c90d2dbbe95f8255a67f87161d06530fa808af1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological system modeling</topic><topic>Computer vision</topic><topic>Crowding</topic><topic>Decision Trees</topic><topic>Deformable models</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Generic human detector</topic><topic>hierarchical part-template matching</topic><topic>Human</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Matching</topic><topic>occlusion analysis</topic><topic>part-template tree</topic><topic>Pattern Recognition, Automated - methods</topic><topic>pose-adaptive descriptor</topic><topic>Posture - physiology</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Training data</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Davis, L.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhe Lin</au><au>Davis, L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2010-04</date><risdate>2010</risdate><volume>32</volume><issue>4</issue><spage>604</spage><epage>618</epage><pages>604-618</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We propose a shape-based, hierarchical part-template matching approach to simultaneous human detection and segmentation combining local part-based and global shape-template-based schemes. The approach relies on the key idea of matching a part-template tree to images hierarchically to detect humans and estimate their poses. For learning a generic human detector, a pose-adaptive feature computation scheme is developed based on a tree matching approach. Instead of traditional concatenation-style image location-based feature encoding, we extract features adaptively in the context of human poses and train a kernel-SVM classifier to separate human/nonhuman patterns. Specifically, the features are collected in the local context of poses by tracing around the estimated shape boundaries. We also introduce an approach to multiple occluded human detection and segmentation based on an iterative occlusion compensation scheme. The output of our learned generic human detector can be used as an initial set of human hypotheses for the iterative optimization. We evaluate our approaches on three public pedestrian data sets (INRIA, MIT-CBCL, and USC-B) and two crowded sequences from Caviar Benchmark and Munich Airport data sets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20224118</pmid><doi>10.1109/TPAMI.2009.204</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2010-04, Vol.32 (4), p.604-618 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_743751234 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence Biological system modeling Computer vision Crowding Decision Trees Deformable models Detectors Feature extraction Generic human detector hierarchical part-template matching Human Humans Image Processing, Computer-Assisted - methods Image segmentation Iterative methods Matching occlusion analysis part-template tree Pattern Recognition, Automated - methods pose-adaptive descriptor Posture - physiology Robustness Segmentation Shape Training data Trees |
title | Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape-Based%20Human%20Detection%20and%20Segmentation%20via%20Hierarchical%20Part-Template%20Matching&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhe%20Lin&rft.date=2010-04&rft.volume=32&rft.issue=4&rft.spage=604&rft.epage=618&rft.pages=604-618&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2009.204&rft_dat=%3Cproquest_RIE%3E875019372%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856584044&rft_id=info:pmid/20224118&rft_ieee_id=5374413&rfr_iscdi=true |