Supervised and Unsupervised Learning by Using Petri Nets

Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375
Hauptverfasser: Shen, V., Yue-Shan Chang, Juang, T.T.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 2
container_start_page 363
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 40
creator Shen, V.
Yue-Shan Chang
Juang, T.T.-Y.
description Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.
doi_str_mv 10.1109/TSMCA.2009.2038068
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_743750654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395689</ieee_id><sourcerecordid>1671280987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_QC-LF71snXwnRyl-Qf2AtueQ7GZlS7utya7Qf2_WFgUPXt4ZhucdZl6EzjGMMAZ9M5s-j29HBEAnoQqEOkADzLnKCSPiMPWgaM4YkcfoJMYFAGZMswFS027jw2cdfZnZpszmTfwdTLwNTd28Z26bzWPfvPk21NmLb-MpOqrsMvqzfR2i-f3dbPyYT14fnsa3k7ygXLc5F0UJvJTMJiXWawlMaK4rqjTYsnK-IESDs2AlKStSClKownknhJPOSTpEV7u9m7D-6HxszaqOhV8ubePXXTSSUclBcJbI639JLCQmCrTql17-QRfrLjTpD6O4pATSSQkiO6gI6xiDr8wm1CsbtgaD6VM336mbPnWzTz2ZLnam2nv_Y-BUc6E0_QKAbHzl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857320290</pqid></control><display><type>article</type><title>Supervised and Unsupervised Learning by Using Petri Nets</title><source>IEEE Electronic Library Online</source><creator>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</creator><creatorcontrib>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</creatorcontrib><description>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2009.2038068</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computer architecture ; Cybernetics ; Fires ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Human ; Knowledge base (KB) ; Learning ; Learning theory ; Machine learning ; Neural networks ; Neurons ; Petri nets ; Petri nets (PNs) ; production rule ; Remedies ; Unsupervised learning</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</citedby><cites>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395689$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395689$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, V.</creatorcontrib><creatorcontrib>Yue-Shan Chang</creatorcontrib><creatorcontrib>Juang, T.T.-Y.</creatorcontrib><title>Supervised and Unsupervised Learning by Using Petri Nets</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</description><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Cybernetics</subject><subject>Fires</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Human</subject><subject>Knowledge base (KB)</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Petri nets</subject><subject>Petri nets (PNs)</subject><subject>production rule</subject><subject>Remedies</subject><subject>Unsupervised learning</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_QC-LF71snXwnRyl-Qf2AtueQ7GZlS7utya7Qf2_WFgUPXt4ZhucdZl6EzjGMMAZ9M5s-j29HBEAnoQqEOkADzLnKCSPiMPWgaM4YkcfoJMYFAGZMswFS027jw2cdfZnZpszmTfwdTLwNTd28Z26bzWPfvPk21NmLb-MpOqrsMvqzfR2i-f3dbPyYT14fnsa3k7ygXLc5F0UJvJTMJiXWawlMaK4rqjTYsnK-IESDs2AlKStSClKownknhJPOSTpEV7u9m7D-6HxszaqOhV8ubePXXTSSUclBcJbI639JLCQmCrTql17-QRfrLjTpD6O4pATSSQkiO6gI6xiDr8wm1CsbtgaD6VM336mbPnWzTz2ZLnam2nv_Y-BUc6E0_QKAbHzl</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Shen, V.</creator><creator>Yue-Shan Chang</creator><creator>Juang, T.T.-Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201003</creationdate><title>Supervised and Unsupervised Learning by Using Petri Nets</title><author>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Cybernetics</topic><topic>Fires</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Human</topic><topic>Knowledge base (KB)</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Petri nets</topic><topic>Petri nets (PNs)</topic><topic>production rule</topic><topic>Remedies</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, V.</creatorcontrib><creatorcontrib>Yue-Shan Chang</creatorcontrib><creatorcontrib>Juang, T.T.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, V.</au><au>Yue-Shan Chang</au><au>Juang, T.T.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised and Unsupervised Learning by Using Petri Nets</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2010-03</date><risdate>2010</risdate><volume>40</volume><issue>2</issue><spage>363</spage><epage>375</epage><pages>363-375</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2009.2038068</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_proquest_miscellaneous_743750654
source IEEE Electronic Library Online
subjects Artificial neural networks
Computer architecture
Cybernetics
Fires
Fuzzy logic
Fuzzy sets
Fuzzy systems
Human
Knowledge base (KB)
Learning
Learning theory
Machine learning
Neural networks
Neurons
Petri nets
Petri nets (PNs)
production rule
Remedies
Unsupervised learning
title Supervised and Unsupervised Learning by Using Petri Nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20and%20Unsupervised%20Learning%20by%20Using%20Petri%20Nets&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Shen,%20V.&rft.date=2010-03&rft.volume=40&rft.issue=2&rft.spage=363&rft.epage=375&rft.pages=363-375&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2009.2038068&rft_dat=%3Cproquest_RIE%3E1671280987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857320290&rft_id=info:pmid/&rft_ieee_id=5395689&rfr_iscdi=true