Supervised and Unsupervised Learning by Using Petri Nets
Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid mor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 2 |
container_start_page | 363 |
container_title | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
container_volume | 40 |
creator | Shen, V. Yue-Shan Chang Juang, T.T.-Y. |
description | Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments. |
doi_str_mv | 10.1109/TSMCA.2009.2038068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_743750654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395689</ieee_id><sourcerecordid>1671280987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_QC-LF71snXwnRyl-Qf2AtueQ7GZlS7utya7Qf2_WFgUPXt4ZhucdZl6EzjGMMAZ9M5s-j29HBEAnoQqEOkADzLnKCSPiMPWgaM4YkcfoJMYFAGZMswFS027jw2cdfZnZpszmTfwdTLwNTd28Z26bzWPfvPk21NmLb-MpOqrsMvqzfR2i-f3dbPyYT14fnsa3k7ygXLc5F0UJvJTMJiXWawlMaK4rqjTYsnK-IESDs2AlKStSClKownknhJPOSTpEV7u9m7D-6HxszaqOhV8ubePXXTSSUclBcJbI639JLCQmCrTql17-QRfrLjTpD6O4pATSSQkiO6gI6xiDr8wm1CsbtgaD6VM336mbPnWzTz2ZLnam2nv_Y-BUc6E0_QKAbHzl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857320290</pqid></control><display><type>article</type><title>Supervised and Unsupervised Learning by Using Petri Nets</title><source>IEEE Electronic Library Online</source><creator>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</creator><creatorcontrib>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</creatorcontrib><description>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2009.2038068</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computer architecture ; Cybernetics ; Fires ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Human ; Knowledge base (KB) ; Learning ; Learning theory ; Machine learning ; Neural networks ; Neurons ; Petri nets ; Petri nets (PNs) ; production rule ; Remedies ; Unsupervised learning</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</citedby><cites>FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395689$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395689$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, V.</creatorcontrib><creatorcontrib>Yue-Shan Chang</creatorcontrib><creatorcontrib>Juang, T.T.-Y.</creatorcontrib><title>Supervised and Unsupervised Learning by Using Petri Nets</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</description><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Cybernetics</subject><subject>Fires</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Human</subject><subject>Knowledge base (KB)</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Petri nets</subject><subject>Petri nets (PNs)</subject><subject>production rule</subject><subject>Remedies</subject><subject>Unsupervised learning</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_QC-LF71snXwnRyl-Qf2AtueQ7GZlS7utya7Qf2_WFgUPXt4ZhucdZl6EzjGMMAZ9M5s-j29HBEAnoQqEOkADzLnKCSPiMPWgaM4YkcfoJMYFAGZMswFS027jw2cdfZnZpszmTfwdTLwNTd28Z26bzWPfvPk21NmLb-MpOqrsMvqzfR2i-f3dbPyYT14fnsa3k7ygXLc5F0UJvJTMJiXWawlMaK4rqjTYsnK-IESDs2AlKStSClKownknhJPOSTpEV7u9m7D-6HxszaqOhV8ubePXXTSSUclBcJbI639JLCQmCrTql17-QRfrLjTpD6O4pATSSQkiO6gI6xiDr8wm1CsbtgaD6VM336mbPnWzTz2ZLnam2nv_Y-BUc6E0_QKAbHzl</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Shen, V.</creator><creator>Yue-Shan Chang</creator><creator>Juang, T.T.-Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201003</creationdate><title>Supervised and Unsupervised Learning by Using Petri Nets</title><author>Shen, V. ; Yue-Shan Chang ; Juang, T.T.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-56cd05d74a05d2ae97046959f3890adfbec2290ba0a72df2d62c8cbeb66b7bb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Cybernetics</topic><topic>Fires</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Human</topic><topic>Knowledge base (KB)</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Petri nets</topic><topic>Petri nets (PNs)</topic><topic>production rule</topic><topic>Remedies</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, V.</creatorcontrib><creatorcontrib>Yue-Shan Chang</creatorcontrib><creatorcontrib>Juang, T.T.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, V.</au><au>Yue-Shan Chang</au><au>Juang, T.T.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised and Unsupervised Learning by Using Petri Nets</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2010-03</date><risdate>2010</risdate><volume>40</volume><issue>2</issue><spage>363</spage><epage>375</epage><pages>363-375</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>Artificial neural networks (ANN) are developed for highly parallel and distributed systems. These systems are able to learn from experience and to perform inferences. Although Petri nets (PNs) were modified to be ANN-like multilayered architectures for fuzzy reasoning, some researchers have paid more attention to the PN-based learning so far. In this paper, we have developed supervised and unsupervised learning algorithms for the machine learning PN (MLPN) models in order to make them fully trainable and to remedy the difficulties encountered by ANN. When compared with ANN, the MLPN model shows some significant advantages. Main results are presented in the form of five observations and supported by some experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2009.2038068</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4427 |
ispartof | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2010-03, Vol.40 (2), p.363-375 |
issn | 1083-4427 2168-2216 1558-2426 2168-2232 |
language | eng |
recordid | cdi_proquest_miscellaneous_743750654 |
source | IEEE Electronic Library Online |
subjects | Artificial neural networks Computer architecture Cybernetics Fires Fuzzy logic Fuzzy sets Fuzzy systems Human Knowledge base (KB) Learning Learning theory Machine learning Neural networks Neurons Petri nets Petri nets (PNs) production rule Remedies Unsupervised learning |
title | Supervised and Unsupervised Learning by Using Petri Nets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20and%20Unsupervised%20Learning%20by%20Using%20Petri%20Nets&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Shen,%20V.&rft.date=2010-03&rft.volume=40&rft.issue=2&rft.spage=363&rft.epage=375&rft.pages=363-375&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2009.2038068&rft_dat=%3Cproquest_RIE%3E1671280987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857320290&rft_id=info:pmid/&rft_ieee_id=5395689&rfr_iscdi=true |