A new real-time algorithm for off-road terrain estimation using laser data
Gaussian mixture algorithm (GMA) is an effective approach for off-road terrain estimation, but still suffers from some difficulties in practical applications, such as complex calculation and object abstraction. In this paper, GMA is modified to improve its real-time performance and to provide it wit...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2009-09, Vol.52 (9), p.1658-1667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 9 |
container_start_page | 1658 |
container_title | Science China. Information sciences |
container_volume | 52 |
creator | Qiu, Quan Yang, TangWen Han, JianDa |
description | Gaussian mixture algorithm (GMA) is an effective approach for off-road terrain estimation, but still suffers from some difficulties in practical applications, such as complex calculation and object abstraction. In this paper, GMA is modified to improve its real-time performance and to provide it with a potential ability of obstacle detection. First, a selection window is designed based on the dominant-ellipse-principle to limit the probability distribution area of each measurement point, therefore avoiding the calculation on the cells outside the dominant ellipse. Second, a clustering approach is proposed in order to distinguish objects efficiently and decrease the operation area of one laser scan. Third, a virtual point vector is introduced to further reduce the computational load of the mean square error matrix. The modified GMA is experimented on a tracked mobile robot, and its improved performance is shown in comparison to the original GMA. |
doi_str_mv | 10.1007/s11432-009-0157-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743723513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>31573714</cqvip_id><sourcerecordid>743723513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-eaff4901a2c2ee98d6a14c95ea90f4c1a8f64e2fb36fe7f282ae645f24693c253</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7owlU0t5nMLEvxSsGNrsPp9GQ6dTppkxmkb29KC4ILVzmQ7zuXn5Brwe8F5-YhCqGVZJyXjIvMsN0JGYkil0wWKj9N9f5Hmsyck4sYV5xrKZUYkbcJ7fCbBoSW9c0aKbS1D02_XFPnA_XOseBhQXsMAZqOYkwU9I3v6BCbrqYtRAx0AT1ckjMHbcSr4zsmn0-PH9MXNnt_fp1OZqxSJusZgnO65AJkJRHLYpGD0FWZIZTc6UpA4XKN0s1V7tA4WUjAXGdO6rxUlczUmNwd-m6C3w5pIbtuYoVtCx36IVqjlZEqEyqRt3_IlR9Cl5azshRFVugyLxIlDlQVfIwBnd2EdGPYWcHtPlx7CNemCO0-XLtLjjw4MbFdjeG383_SzXHQ0nf1Nnl2DtWXa1q0KiHKJOMH9oWH8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918584968</pqid></control><display><type>article</type><title>A new real-time algorithm for off-road terrain estimation using laser data</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Qiu, Quan ; Yang, TangWen ; Han, JianDa</creator><creatorcontrib>Qiu, Quan ; Yang, TangWen ; Han, JianDa</creatorcontrib><description>Gaussian mixture algorithm (GMA) is an effective approach for off-road terrain estimation, but still suffers from some difficulties in practical applications, such as complex calculation and object abstraction. In this paper, GMA is modified to improve its real-time performance and to provide it with a potential ability of obstacle detection. First, a selection window is designed based on the dominant-ellipse-principle to limit the probability distribution area of each measurement point, therefore avoiding the calculation on the cells outside the dominant ellipse. Second, a clustering approach is proposed in order to distinguish objects efficiently and decrease the operation area of one laser scan. Third, a virtual point vector is introduced to further reduce the computational load of the mean square error matrix. The modified GMA is experimented on a tracked mobile robot, and its improved performance is shown in comparison to the original GMA.</description><identifier>ISSN: 1009-2757</identifier><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1862-2836</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-009-0157-y</identifier><language>eng</language><publisher>Heidelberg: SP Science in China Press</publisher><subject>Algorithms ; Clustering ; Computer Science ; Information Systems and Communication Service ; Mathematical analysis ; Obstacle avoidance ; Real time ; Roads ; Terrain ; 地形数据 ; 均方误差矩阵 ; 实时性能 ; 时间算法 ; 激光扫描 ; 环境状况</subject><ispartof>Science China. Information sciences, 2009-09, Vol.52 (9), p.1658-1667</ispartof><rights>Science in China Press and Springer Berlin Heidelberg 2009</rights><rights>Science in China Press and Springer Berlin Heidelberg 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-eaff4901a2c2ee98d6a14c95ea90f4c1a8f64e2fb36fe7f282ae645f24693c253</citedby><cites>FETCH-LOGICAL-c375t-eaff4901a2c2ee98d6a14c95ea90f4c1a8f64e2fb36fe7f282ae645f24693c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009X/84009X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-009-0157-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918584968?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Qiu, Quan</creatorcontrib><creatorcontrib>Yang, TangWen</creatorcontrib><creatorcontrib>Han, JianDa</creatorcontrib><title>A new real-time algorithm for off-road terrain estimation using laser data</title><title>Science China. Information sciences</title><addtitle>Sci. China Ser. F-Inf. Sci</addtitle><addtitle>Science in China(Series F)</addtitle><description>Gaussian mixture algorithm (GMA) is an effective approach for off-road terrain estimation, but still suffers from some difficulties in practical applications, such as complex calculation and object abstraction. In this paper, GMA is modified to improve its real-time performance and to provide it with a potential ability of obstacle detection. First, a selection window is designed based on the dominant-ellipse-principle to limit the probability distribution area of each measurement point, therefore avoiding the calculation on the cells outside the dominant ellipse. Second, a clustering approach is proposed in order to distinguish objects efficiently and decrease the operation area of one laser scan. Third, a virtual point vector is introduced to further reduce the computational load of the mean square error matrix. The modified GMA is experimented on a tracked mobile robot, and its improved performance is shown in comparison to the original GMA.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>Mathematical analysis</subject><subject>Obstacle avoidance</subject><subject>Real time</subject><subject>Roads</subject><subject>Terrain</subject><subject>地形数据</subject><subject>均方误差矩阵</subject><subject>实时性能</subject><subject>时间算法</subject><subject>激光扫描</subject><subject>环境状况</subject><issn>1009-2757</issn><issn>1674-733X</issn><issn>1862-2836</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsP4C7owlU0t5nMLEvxSsGNrsPp9GQ6dTppkxmkb29KC4ILVzmQ7zuXn5Brwe8F5-YhCqGVZJyXjIvMsN0JGYkil0wWKj9N9f5Hmsyck4sYV5xrKZUYkbcJ7fCbBoSW9c0aKbS1D02_XFPnA_XOseBhQXsMAZqOYkwU9I3v6BCbrqYtRAx0AT1ckjMHbcSr4zsmn0-PH9MXNnt_fp1OZqxSJusZgnO65AJkJRHLYpGD0FWZIZTc6UpA4XKN0s1V7tA4WUjAXGdO6rxUlczUmNwd-m6C3w5pIbtuYoVtCx36IVqjlZEqEyqRt3_IlR9Cl5azshRFVugyLxIlDlQVfIwBnd2EdGPYWcHtPlx7CNemCO0-XLtLjjw4MbFdjeG383_SzXHQ0nf1Nnl2DtWXa1q0KiHKJOMH9oWH8w</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Qiu, Quan</creator><creator>Yang, TangWen</creator><creator>Han, JianDa</creator><general>SP Science in China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>A new real-time algorithm for off-road terrain estimation using laser data</title><author>Qiu, Quan ; Yang, TangWen ; Han, JianDa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-eaff4901a2c2ee98d6a14c95ea90f4c1a8f64e2fb36fe7f282ae645f24693c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>Mathematical analysis</topic><topic>Obstacle avoidance</topic><topic>Real time</topic><topic>Roads</topic><topic>Terrain</topic><topic>地形数据</topic><topic>均方误差矩阵</topic><topic>实时性能</topic><topic>时间算法</topic><topic>激光扫描</topic><topic>环境状况</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Quan</creatorcontrib><creatorcontrib>Yang, TangWen</creatorcontrib><creatorcontrib>Han, JianDa</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Quan</au><au>Yang, TangWen</au><au>Han, JianDa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new real-time algorithm for off-road terrain estimation using laser data</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Ser. F-Inf. Sci</stitle><addtitle>Science in China(Series F)</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>52</volume><issue>9</issue><spage>1658</spage><epage>1667</epage><pages>1658-1667</pages><issn>1009-2757</issn><issn>1674-733X</issn><eissn>1862-2836</eissn><eissn>1869-1919</eissn><abstract>Gaussian mixture algorithm (GMA) is an effective approach for off-road terrain estimation, but still suffers from some difficulties in practical applications, such as complex calculation and object abstraction. In this paper, GMA is modified to improve its real-time performance and to provide it with a potential ability of obstacle detection. First, a selection window is designed based on the dominant-ellipse-principle to limit the probability distribution area of each measurement point, therefore avoiding the calculation on the cells outside the dominant ellipse. Second, a clustering approach is proposed in order to distinguish objects efficiently and decrease the operation area of one laser scan. Third, a virtual point vector is introduced to further reduce the computational load of the mean square error matrix. The modified GMA is experimented on a tracked mobile robot, and its improved performance is shown in comparison to the original GMA.</abstract><cop>Heidelberg</cop><pub>SP Science in China Press</pub><doi>10.1007/s11432-009-0157-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-2757 |
ispartof | Science China. Information sciences, 2009-09, Vol.52 (9), p.1658-1667 |
issn | 1009-2757 1674-733X 1862-2836 1869-1919 |
language | eng |
recordid | cdi_proquest_miscellaneous_743723513 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Clustering Computer Science Information Systems and Communication Service Mathematical analysis Obstacle avoidance Real time Roads Terrain 地形数据 均方误差矩阵 实时性能 时间算法 激光扫描 环境状况 |
title | A new real-time algorithm for off-road terrain estimation using laser data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20real-time%20algorithm%20for%20off-road%20terrain%20estimation%20using%20laser%20data&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Qiu,%20Quan&rft.date=2009-09-01&rft.volume=52&rft.issue=9&rft.spage=1658&rft.epage=1667&rft.pages=1658-1667&rft.issn=1009-2757&rft.eissn=1862-2836&rft_id=info:doi/10.1007/s11432-009-0157-y&rft_dat=%3Cproquest_cross%3E743723513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918584968&rft_id=info:pmid/&rft_cqvip_id=31573714&rfr_iscdi=true |