Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth

Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-10, Vol.19 (19), p.3070-3076
Hauptverfasser: Contreras‐Cáceres, Rafael, Pacifico, Jessica, Pastoriza‐Santos, Isabel, Pérez‐Juste, Jorge, Fernández‐Barbero, Antonio, Liz‐Marzán, Luis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3076
container_issue 19
container_start_page 3070
container_title Advanced functional materials
container_volume 19
creator Contreras‐Cáceres, Rafael
Pacifico, Jessica
Pastoriza‐Santos, Isabel
Pérez‐Juste, Jorge
Fernández‐Barbero, Antonio
Liz‐Marzán, Luis M.
description Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores. Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are successfully synthesized (see figure) by a two‐step protocol. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to few hundred nanometers can be tuned. Additionally, the porous pNIPAM shells can be used to modulate the catalytic activity.
doi_str_mv 10.1002/adfm.200900481
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743722054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743722054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-ebaef690c112f95cc33e705fa2fd60cab1ac995c1df651c1081dc583caae74c3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMntjaYod55eJqKWlUn-Q6MBmuY5NDYnd2glVNx6BZ-RJSFRURqZ7dc_5ru49AFxj1McI-bcsl2XfRyhFKEjwCejgCEceQX5yeuzxyzm4cO4NIRzHJOiAbVbfb-aTp2wGl2thS-OEdqpSHwLOmTausjWvaivcHRwYXVlTQPMhLHxei6KAA2uc-_78KpR-V_q1BxeNxhphqMp2j9GuB5nOG9YKOLZmV60vwZlkhRNXv7ULlqOH5eDRmy7Gk0E29ThJYuyJFRMyShHH2JdpyDkhIkahZL7MI8TZCjOeNnOcyyjEHKME5zxMCGdMxAEnXXBzWLuxZlsLV9FSOd4czbQwtaNxQGLfR2HQOPsHJ2-_sULSjVUls3uKEW2TpW2y9JhsA6QHYKcKsf_HTbPhaPbH_gAVaoBJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743722054</pqid></control><display><type>article</type><title>Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Contreras‐Cáceres, Rafael ; Pacifico, Jessica ; Pastoriza‐Santos, Isabel ; Pérez‐Juste, Jorge ; Fernández‐Barbero, Antonio ; Liz‐Marzán, Luis M.</creator><creatorcontrib>Contreras‐Cáceres, Rafael ; Pacifico, Jessica ; Pastoriza‐Santos, Isabel ; Pérez‐Juste, Jorge ; Fernández‐Barbero, Antonio ; Liz‐Marzán, Luis M.</creatorcontrib><description>Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores. Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are successfully synthesized (see figure) by a two‐step protocol. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to few hundred nanometers can be tuned. Additionally, the porous pNIPAM shells can be used to modulate the catalytic activity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200900481</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>catalysis ; core/Shell Nanoparticles ; gold ; nanoparticles ; thermoresponsive microgels</subject><ispartof>Advanced functional materials, 2009-10, Vol.19 (19), p.3070-3076</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-ebaef690c112f95cc33e705fa2fd60cab1ac995c1df651c1081dc583caae74c3</citedby><cites>FETCH-LOGICAL-c3871-ebaef690c112f95cc33e705fa2fd60cab1ac995c1df651c1081dc583caae74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200900481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200900481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Contreras‐Cáceres, Rafael</creatorcontrib><creatorcontrib>Pacifico, Jessica</creatorcontrib><creatorcontrib>Pastoriza‐Santos, Isabel</creatorcontrib><creatorcontrib>Pérez‐Juste, Jorge</creatorcontrib><creatorcontrib>Fernández‐Barbero, Antonio</creatorcontrib><creatorcontrib>Liz‐Marzán, Luis M.</creatorcontrib><title>Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth</title><title>Advanced functional materials</title><description>Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores. Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are successfully synthesized (see figure) by a two‐step protocol. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to few hundred nanometers can be tuned. Additionally, the porous pNIPAM shells can be used to modulate the catalytic activity.</description><subject>catalysis</subject><subject>core/Shell Nanoparticles</subject><subject>gold</subject><subject>nanoparticles</subject><subject>thermoresponsive microgels</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMntjaYod55eJqKWlUn-Q6MBmuY5NDYnd2glVNx6BZ-RJSFRURqZ7dc_5ru49AFxj1McI-bcsl2XfRyhFKEjwCejgCEceQX5yeuzxyzm4cO4NIRzHJOiAbVbfb-aTp2wGl2thS-OEdqpSHwLOmTausjWvaivcHRwYXVlTQPMhLHxei6KAA2uc-_78KpR-V_q1BxeNxhphqMp2j9GuB5nOG9YKOLZmV60vwZlkhRNXv7ULlqOH5eDRmy7Gk0E29ThJYuyJFRMyShHH2JdpyDkhIkahZL7MI8TZCjOeNnOcyyjEHKME5zxMCGdMxAEnXXBzWLuxZlsLV9FSOd4czbQwtaNxQGLfR2HQOPsHJ2-_sULSjVUls3uKEW2TpW2y9JhsA6QHYKcKsf_HTbPhaPbH_gAVaoBJ</recordid><startdate>20091009</startdate><enddate>20091009</enddate><creator>Contreras‐Cáceres, Rafael</creator><creator>Pacifico, Jessica</creator><creator>Pastoriza‐Santos, Isabel</creator><creator>Pérez‐Juste, Jorge</creator><creator>Fernández‐Barbero, Antonio</creator><creator>Liz‐Marzán, Luis M.</creator><general>WILEY‐VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20091009</creationdate><title>Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth</title><author>Contreras‐Cáceres, Rafael ; Pacifico, Jessica ; Pastoriza‐Santos, Isabel ; Pérez‐Juste, Jorge ; Fernández‐Barbero, Antonio ; Liz‐Marzán, Luis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-ebaef690c112f95cc33e705fa2fd60cab1ac995c1df651c1081dc583caae74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>catalysis</topic><topic>core/Shell Nanoparticles</topic><topic>gold</topic><topic>nanoparticles</topic><topic>thermoresponsive microgels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras‐Cáceres, Rafael</creatorcontrib><creatorcontrib>Pacifico, Jessica</creatorcontrib><creatorcontrib>Pastoriza‐Santos, Isabel</creatorcontrib><creatorcontrib>Pérez‐Juste, Jorge</creatorcontrib><creatorcontrib>Fernández‐Barbero, Antonio</creatorcontrib><creatorcontrib>Liz‐Marzán, Luis M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras‐Cáceres, Rafael</au><au>Pacifico, Jessica</au><au>Pastoriza‐Santos, Isabel</au><au>Pérez‐Juste, Jorge</au><au>Fernández‐Barbero, Antonio</au><au>Liz‐Marzán, Luis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth</atitle><jtitle>Advanced functional materials</jtitle><date>2009-10-09</date><risdate>2009</risdate><volume>19</volume><issue>19</issue><spage>3070</spage><epage>3076</epage><pages>3070-3076</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores. Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are successfully synthesized (see figure) by a two‐step protocol. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to few hundred nanometers can be tuned. Additionally, the porous pNIPAM shells can be used to modulate the catalytic activity.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/adfm.200900481</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2009-10, Vol.19 (19), p.3070-3076
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_743722054
source Wiley Online Library Journals Frontfile Complete
subjects catalysis
core/Shell Nanoparticles
gold
nanoparticles
thermoresponsive microgels
title Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au@pNIPAM%20Thermosensitive%20Nanostructures:%20Control%20over%20Shell%20Cross%E2%80%90linking,%20Overall%20Dimensions,%20and%20Core%20Growth&rft.jtitle=Advanced%20functional%20materials&rft.au=Contreras%E2%80%90C%C3%A1ceres,%20Rafael&rft.date=2009-10-09&rft.volume=19&rft.issue=19&rft.spage=3070&rft.epage=3076&rft.pages=3070-3076&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200900481&rft_dat=%3Cproquest_cross%3E743722054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743722054&rft_id=info:pmid/&rfr_iscdi=true