Numerical experience with a class of self-scaling quasi-Newton algorithms

Self-scaling quasi-Newton methods for unconstrained optimization depend upon updating the Hessian approximation by a formula which depends on two parameters (say, τ and θ) such that τ = 1, θ = 0, and θ = 1 yield the unscaled Broyden family, the BFGS update, and the DFP update, respectively. In previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1998-03, Vol.96 (3), p.533-553
1. Verfasser: AL-BAALI, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!