Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend
Here, a new methodology for analyzing the charge‐density dependence of carrier mobility in organic semiconductors, applicable to the low‐charge‐density regime (1014–1017 cm−3) corresponding to the operation conditions of many organic optoelectronic devices, is reported. For the P3HT/PCBM blend photo...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2010-03, Vol.20 (5), p.698-702 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 5 |
container_start_page | 698 |
container_title | Advanced functional materials |
container_volume | 20 |
creator | Shuttle, Christopher G. Hamilton, Richard Nelson, Jenny O'Regan, Brian C. Durrant, James R. |
description | Here, a new methodology for analyzing the charge‐density dependence of carrier mobility in organic semiconductors, applicable to the low‐charge‐density regime (1014–1017 cm−3) corresponding to the operation conditions of many organic optoelectronic devices, is reported. For the P3HT/PCBM blend photovoltaic devices studied herein, the hole mobility µ is found to depend on charge density n according to a power law µ(n) ∝ nδ, where δ = 0.35. This dependence is shown to be consistent with an energetic disorder model based upon an exponential tail of localized intra‐band states.
The charge‐density dependence of the carrier mobility of P3HT/PCBM solar cells is examined using charge‐extraction measurements combined with short‐circuit photocurrent data. The current increases sub‐linearly with charge density consistent with a charge density dependent carrier mobility μ(n). This charge density dependence is the same as determined for the bimolecular recombination coefficient k(n). This agrees with a multiple trapping model in which the carrier mobility and bimolecular recombination coefficient are both charge density dependent μ(n) ∝ k(n). |
doi_str_mv | 10.1002/adfm.200901734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743695467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743695467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4254-c0d4e90782e36c13ac29d0ca60562683971731d53a31da9ddc74348466d87b5c3</originalsourceid><addsrcrecordid>eNqFkM9PwyAYhhujiXN69dybp04olLbH_XDTZHMxavQkYfB1oi2d0Eb338usWbx5-fiS93kIvEFwjtEAIxRfClVUgxihHOGU0IOghxlmEUFxdrjf8fNxcOLcG_KMh3rBywKEay1UYJqwLsLxq7BriCZgnG624QQ2YBQYCT-hsFaDDRf1Spe7WJtQmHBp18JoGd5DpWVtVCub2oaj0punwVEhSgdnv2c_eJxePYyvo_lydjMeziNJ44RGEikKOUqzGAiTmAgZ5wpJwVDCYpaRPPVfwiohwk-RKyVTSmhGGVNZukok6QcX3b0bW3-04BpeaSehLIWBunXc4yxPKEs9OehIaWvnLBR8Y3Ul7JZjxHc98l2PfN-jF_JO-NQlbP-h-XAyXfx1o87VroGvvSvsO_dPSRP-dDvj-DaNZ3h0xyn5BskdhWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743695467</pqid></control><display><type>article</type><title>Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shuttle, Christopher G. ; Hamilton, Richard ; Nelson, Jenny ; O'Regan, Brian C. ; Durrant, James R.</creator><creatorcontrib>Shuttle, Christopher G. ; Hamilton, Richard ; Nelson, Jenny ; O'Regan, Brian C. ; Durrant, James R.</creatorcontrib><description>Here, a new methodology for analyzing the charge‐density dependence of carrier mobility in organic semiconductors, applicable to the low‐charge‐density regime (1014–1017 cm−3) corresponding to the operation conditions of many organic optoelectronic devices, is reported. For the P3HT/PCBM blend photovoltaic devices studied herein, the hole mobility µ is found to depend on charge density n according to a power law µ(n) ∝ nδ, where δ = 0.35. This dependence is shown to be consistent with an energetic disorder model based upon an exponential tail of localized intra‐band states.
The charge‐density dependence of the carrier mobility of P3HT/PCBM solar cells is examined using charge‐extraction measurements combined with short‐circuit photocurrent data. The current increases sub‐linearly with charge density consistent with a charge density dependent carrier mobility μ(n). This charge density dependence is the same as determined for the bimolecular recombination coefficient k(n). This agrees with a multiple trapping model in which the carrier mobility and bimolecular recombination coefficient are both charge density dependent μ(n) ∝ k(n).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200901734</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Charge mobility ; P3HT ; Polymers ; Recombination ; Solar cells</subject><ispartof>Advanced functional materials, 2010-03, Vol.20 (5), p.698-702</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4254-c0d4e90782e36c13ac29d0ca60562683971731d53a31da9ddc74348466d87b5c3</citedby><cites>FETCH-LOGICAL-c4254-c0d4e90782e36c13ac29d0ca60562683971731d53a31da9ddc74348466d87b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200901734$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200901734$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shuttle, Christopher G.</creatorcontrib><creatorcontrib>Hamilton, Richard</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>O'Regan, Brian C.</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><title>Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Here, a new methodology for analyzing the charge‐density dependence of carrier mobility in organic semiconductors, applicable to the low‐charge‐density regime (1014–1017 cm−3) corresponding to the operation conditions of many organic optoelectronic devices, is reported. For the P3HT/PCBM blend photovoltaic devices studied herein, the hole mobility µ is found to depend on charge density n according to a power law µ(n) ∝ nδ, where δ = 0.35. This dependence is shown to be consistent with an energetic disorder model based upon an exponential tail of localized intra‐band states.
The charge‐density dependence of the carrier mobility of P3HT/PCBM solar cells is examined using charge‐extraction measurements combined with short‐circuit photocurrent data. The current increases sub‐linearly with charge density consistent with a charge density dependent carrier mobility μ(n). This charge density dependence is the same as determined for the bimolecular recombination coefficient k(n). This agrees with a multiple trapping model in which the carrier mobility and bimolecular recombination coefficient are both charge density dependent μ(n) ∝ k(n).</description><subject>Charge mobility</subject><subject>P3HT</subject><subject>Polymers</subject><subject>Recombination</subject><subject>Solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwyAYhhujiXN69dybp04olLbH_XDTZHMxavQkYfB1oi2d0Eb338usWbx5-fiS93kIvEFwjtEAIxRfClVUgxihHOGU0IOghxlmEUFxdrjf8fNxcOLcG_KMh3rBywKEay1UYJqwLsLxq7BriCZgnG624QQ2YBQYCT-hsFaDDRf1Spe7WJtQmHBp18JoGd5DpWVtVCub2oaj0punwVEhSgdnv2c_eJxePYyvo_lydjMeziNJ44RGEikKOUqzGAiTmAgZ5wpJwVDCYpaRPPVfwiohwk-RKyVTSmhGGVNZukok6QcX3b0bW3-04BpeaSehLIWBunXc4yxPKEs9OehIaWvnLBR8Y3Ul7JZjxHc98l2PfN-jF_JO-NQlbP-h-XAyXfx1o87VroGvvSvsO_dPSRP-dDvj-DaNZ3h0xyn5BskdhWo</recordid><startdate>20100309</startdate><enddate>20100309</enddate><creator>Shuttle, Christopher G.</creator><creator>Hamilton, Richard</creator><creator>Nelson, Jenny</creator><creator>O'Regan, Brian C.</creator><creator>Durrant, James R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100309</creationdate><title>Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend</title><author>Shuttle, Christopher G. ; Hamilton, Richard ; Nelson, Jenny ; O'Regan, Brian C. ; Durrant, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4254-c0d4e90782e36c13ac29d0ca60562683971731d53a31da9ddc74348466d87b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Charge mobility</topic><topic>P3HT</topic><topic>Polymers</topic><topic>Recombination</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shuttle, Christopher G.</creatorcontrib><creatorcontrib>Hamilton, Richard</creatorcontrib><creatorcontrib>Nelson, Jenny</creatorcontrib><creatorcontrib>O'Regan, Brian C.</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shuttle, Christopher G.</au><au>Hamilton, Richard</au><au>Nelson, Jenny</au><au>O'Regan, Brian C.</au><au>Durrant, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2010-03-09</date><risdate>2010</risdate><volume>20</volume><issue>5</issue><spage>698</spage><epage>702</epage><pages>698-702</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Here, a new methodology for analyzing the charge‐density dependence of carrier mobility in organic semiconductors, applicable to the low‐charge‐density regime (1014–1017 cm−3) corresponding to the operation conditions of many organic optoelectronic devices, is reported. For the P3HT/PCBM blend photovoltaic devices studied herein, the hole mobility µ is found to depend on charge density n according to a power law µ(n) ∝ nδ, where δ = 0.35. This dependence is shown to be consistent with an energetic disorder model based upon an exponential tail of localized intra‐band states.
The charge‐density dependence of the carrier mobility of P3HT/PCBM solar cells is examined using charge‐extraction measurements combined with short‐circuit photocurrent data. The current increases sub‐linearly with charge density consistent with a charge density dependent carrier mobility μ(n). This charge density dependence is the same as determined for the bimolecular recombination coefficient k(n). This agrees with a multiple trapping model in which the carrier mobility and bimolecular recombination coefficient are both charge density dependent μ(n) ∝ k(n).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200901734</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2010-03, Vol.20 (5), p.698-702 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_743695467 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Charge mobility P3HT Polymers Recombination Solar cells |
title | Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Charge-Density%20Dependence%20of%20Carrier%20Mobility%20in%20an%20Organic%20Semiconductor%20Blend&rft.jtitle=Advanced%20functional%20materials&rft.au=Shuttle,%20Christopher%20G.&rft.date=2010-03-09&rft.volume=20&rft.issue=5&rft.spage=698&rft.epage=702&rft.pages=698-702&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200901734&rft_dat=%3Cproquest_cross%3E743695467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743695467&rft_id=info:pmid/&rfr_iscdi=true |