Modeling of the melting layer. Part I : Dynamics and microphysics
To obtain the full description of the dynamical and microphysical finescale structures required for the computation of the radar-derived brightband parameters, a numerical model has been developed. A bulk microphysics module was introduced into a nonhydrostatic, fully compressible dynamic framework....
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 1999-10, Vol.56 (20), p.3573-3592 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3592 |
---|---|
container_issue | 20 |
container_start_page | 3573 |
container_title | Journal of the atmospheric sciences |
container_volume | 56 |
creator | SZYRMER, W ZAWADZKI, I |
description | To obtain the full description of the dynamical and microphysical finescale structures required for the computation of the radar-derived brightband parameters, a numerical model has been developed. A bulk microphysics module was introduced into a nonhydrostatic, fully compressible dynamic framework. A microphysical parameterization scheme, with five water categories (vapor, cloud water, snow, melting snow, and rain), describes the interactions related to the evolution of the melting layer (melting and diffusional exchanges of mass of each hydrometeor category). Dynamic, thermodynamic, and microphysical processes are fully coupled. The main characteristics of the bulk parameterization scheme for melting of snow are the following: 1) wet snow is described by its water content and by an additional prognostic variable, namely, the diameter of the smallest snowflake not yet completely melted; 2) the fall velocity of the melting snowflakes is based on the laboratory observations; and 3) a size-dependent ventilation coefficient of the melting particles is used. With this new formulation of the melting process some approximate analytical relations between variables that characterize the melting layer are obtained. The results of simulations show that the nonuniformity of the snow content causes horizontal variability of various atmospheric properties within the melting layer, which leads to the generation of convective cells. The impact of the induced finescale dynamics on the microphysical structure within the melting zone is analyzed. |
doi_str_mv | 10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743695416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21353194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-80e93ccb057a1412a6a296e8924272e31884d2f9eb2ab255703d8630f959be433</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMoWC_vEES8LKY9ObnMREUo9QotdaHrkE4zOjKdqcl00bc3Q0XBhZ5NTsLHf5J8hAwY9BlL5YBJhASE0mdMa30OUl1xmfKLyfR5Mn66xj70R9NL3CK9b3Kb9AAQE6Ex2yV7IbxDLExZjwwnzdxVZf1Km4K2b44uXNV228qune_TJ-tb-kgv6M26tosyD9TWcxob3yzf1iEeHJCdwlbBHX6t--Tl7vZ59JCMp_ePo-E4yQXHNsnAaZ7nM5CpZYKhVRa1cplGgSk6zrJMzLHQboZ2hlKmwOeZ4lBoqWdOcL5PTje5S998rFxozaIMuasqW7tmFUwquNJSMBXJkz9JZFxypsW_IMtAqwy6xKNf4Huz8nV8rkGuZLytwgjdb6D4NyF4V5ilLxfWrw0D06kznRDTCTGdOhPVmU6d2agzaMCMpqZLOv4aZ0Nuq8LbOi_DT5xOGTDkn_hamM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236555762</pqid></control><display><type>article</type><title>Modeling of the melting layer. Part I : Dynamics and microphysics</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>SZYRMER, W ; ZAWADZKI, I</creator><creatorcontrib>SZYRMER, W ; ZAWADZKI, I</creatorcontrib><description>To obtain the full description of the dynamical and microphysical finescale structures required for the computation of the radar-derived brightband parameters, a numerical model has been developed. A bulk microphysics module was introduced into a nonhydrostatic, fully compressible dynamic framework. A microphysical parameterization scheme, with five water categories (vapor, cloud water, snow, melting snow, and rain), describes the interactions related to the evolution of the melting layer (melting and diffusional exchanges of mass of each hydrometeor category). Dynamic, thermodynamic, and microphysical processes are fully coupled. The main characteristics of the bulk parameterization scheme for melting of snow are the following: 1) wet snow is described by its water content and by an additional prognostic variable, namely, the diameter of the smallest snowflake not yet completely melted; 2) the fall velocity of the melting snowflakes is based on the laboratory observations; and 3) a size-dependent ventilation coefficient of the melting particles is used. With this new formulation of the melting process some approximate analytical relations between variables that characterize the melting layer are obtained. The results of simulations show that the nonuniformity of the snow content causes horizontal variability of various atmospheric properties within the melting layer, which leads to the generation of convective cells. The impact of the induced finescale dynamics on the microphysical structure within the melting zone is analyzed.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Cloud physics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Ice ; Mathematical models ; Meteorology ; Physics ; Rain ; Weather</subject><ispartof>Journal of the atmospheric sciences, 1999-10, Vol.56 (20), p.3573-3592</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Meteorological Society Oct 15, 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1971012$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SZYRMER, W</creatorcontrib><creatorcontrib>ZAWADZKI, I</creatorcontrib><title>Modeling of the melting layer. Part I : Dynamics and microphysics</title><title>Journal of the atmospheric sciences</title><description>To obtain the full description of the dynamical and microphysical finescale structures required for the computation of the radar-derived brightband parameters, a numerical model has been developed. A bulk microphysics module was introduced into a nonhydrostatic, fully compressible dynamic framework. A microphysical parameterization scheme, with five water categories (vapor, cloud water, snow, melting snow, and rain), describes the interactions related to the evolution of the melting layer (melting and diffusional exchanges of mass of each hydrometeor category). Dynamic, thermodynamic, and microphysical processes are fully coupled. The main characteristics of the bulk parameterization scheme for melting of snow are the following: 1) wet snow is described by its water content and by an additional prognostic variable, namely, the diameter of the smallest snowflake not yet completely melted; 2) the fall velocity of the melting snowflakes is based on the laboratory observations; and 3) a size-dependent ventilation coefficient of the melting particles is used. With this new formulation of the melting process some approximate analytical relations between variables that characterize the melting layer are obtained. The results of simulations show that the nonuniformity of the snow content causes horizontal variability of various atmospheric properties within the melting layer, which leads to the generation of convective cells. The impact of the induced finescale dynamics on the microphysical structure within the melting zone is analyzed.</description><subject>Cloud physics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Ice</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Physics</subject><subject>Rain</subject><subject>Weather</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctKAzEUhoMoWC_vEES8LKY9ObnMREUo9QotdaHrkE4zOjKdqcl00bc3Q0XBhZ5NTsLHf5J8hAwY9BlL5YBJhASE0mdMa30OUl1xmfKLyfR5Mn66xj70R9NL3CK9b3Kb9AAQE6Ex2yV7IbxDLExZjwwnzdxVZf1Km4K2b44uXNV228qune_TJ-tb-kgv6M26tosyD9TWcxob3yzf1iEeHJCdwlbBHX6t--Tl7vZ59JCMp_ePo-E4yQXHNsnAaZ7nM5CpZYKhVRa1cplGgSk6zrJMzLHQboZ2hlKmwOeZ4lBoqWdOcL5PTje5S998rFxozaIMuasqW7tmFUwquNJSMBXJkz9JZFxypsW_IMtAqwy6xKNf4Huz8nV8rkGuZLytwgjdb6D4NyF4V5ilLxfWrw0D06kznRDTCTGdOhPVmU6d2agzaMCMpqZLOv4aZ0Nuq8LbOi_DT5xOGTDkn_hamM8</recordid><startdate>19991015</startdate><enddate>19991015</enddate><creator>SZYRMER, W</creator><creator>ZAWADZKI, I</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>19991015</creationdate><title>Modeling of the melting layer. Part I : Dynamics and microphysics</title><author>SZYRMER, W ; ZAWADZKI, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-80e93ccb057a1412a6a296e8924272e31884d2f9eb2ab255703d8630f959be433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Cloud physics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Ice</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Physics</topic><topic>Rain</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SZYRMER, W</creatorcontrib><creatorcontrib>ZAWADZKI, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SZYRMER, W</au><au>ZAWADZKI, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the melting layer. Part I : Dynamics and microphysics</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>1999-10-15</date><risdate>1999</risdate><volume>56</volume><issue>20</issue><spage>3573</spage><epage>3592</epage><pages>3573-3592</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>To obtain the full description of the dynamical and microphysical finescale structures required for the computation of the radar-derived brightband parameters, a numerical model has been developed. A bulk microphysics module was introduced into a nonhydrostatic, fully compressible dynamic framework. A microphysical parameterization scheme, with five water categories (vapor, cloud water, snow, melting snow, and rain), describes the interactions related to the evolution of the melting layer (melting and diffusional exchanges of mass of each hydrometeor category). Dynamic, thermodynamic, and microphysical processes are fully coupled. The main characteristics of the bulk parameterization scheme for melting of snow are the following: 1) wet snow is described by its water content and by an additional prognostic variable, namely, the diameter of the smallest snowflake not yet completely melted; 2) the fall velocity of the melting snowflakes is based on the laboratory observations; and 3) a size-dependent ventilation coefficient of the melting particles is used. With this new formulation of the melting process some approximate analytical relations between variables that characterize the melting layer are obtained. The results of simulations show that the nonuniformity of the snow content causes horizontal variability of various atmospheric properties within the melting layer, which leads to the generation of convective cells. The impact of the induced finescale dynamics on the microphysical structure within the melting zone is analyzed.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 1999-10, Vol.56 (20), p.3573-3592 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_miscellaneous_743695416 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Cloud physics Earth, ocean, space Exact sciences and technology External geophysics Ice Mathematical models Meteorology Physics Rain Weather |
title | Modeling of the melting layer. Part I : Dynamics and microphysics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20melting%20layer.%20Part%20I%20:%20Dynamics%20and%20microphysics&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=SZYRMER,%20W&rft.date=1999-10-15&rft.volume=56&rft.issue=20&rft.spage=3573&rft.epage=3592&rft.pages=3573-3592&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/1520-0469(1999)056%3C3573:MOTMLP%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E21353194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236555762&rft_id=info:pmid/&rfr_iscdi=true |