Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection
This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2010-03, Vol.29 (3), p.598-609 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | 3 |
container_start_page | 598 |
container_title | IEEE transactions on medical imaging |
container_volume | 29 |
creator | Takemura, A. Shimizu, A. Hamamoto, K. |
description | This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors. |
doi_str_mv | 10.1109/TMI.2009.2022630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_743659868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4967960</ieee_id><sourcerecordid>746074564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fcdc938c9e7c4d24de27f1a019b0767f423e7aced826cf0606019c87cc7826363</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhi0EoqFwR0JCFhdOKeOP9ccxCW2JVMSBRHBbOd7Z1NXuuti7B_4BPxtHSXvgUmRpLI2feUeeeQl5y-CCMbCfNl_XFxzAlsC5EvCMzFhVmTmv5M_nZAZcmzmA4mfkVc53AExWYF-SMw7MWgt6Rv58Dtmn0IfBjSEONLZ0mdDlkW6mPqZMw0C33ZhcjkPwdN27PWa6zWHYUzfQyyFjv-uQrjqXc2gDJrp0GRtatMZbpIvGLWMscotuH1MYb3v6o0R6hW6cEtLv2KE_dH5NXrSuy_jmdJ-T7dXlZvVlfvPter1a3My9NGact77xVhhvUXvZcNkg1y1z5T870Eq3kgvUzmNjuPItqHKY9UZ7r0tGKHFOPh5171P8NWEe675MALvODRinXBultVTK6CfJgoGWlZL_QQpVWaPM06QQZbHGQiE__EPexSkNZTS1KT0rwZQtEBwhn2LOCdv6vuzSpd81g_rgkLo4pD44pD45pJS8P-lOux6bx4IHSxTg3REIiPj4LK3SVoH4CxTGvtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856453169</pqid></control><display><type>article</type><title>Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Takemura, A. ; Shimizu, A. ; Hamamoto, K.</creator><creatorcontrib>Takemura, A. ; Shimizu, A. ; Hamamoto, K.</creatorcontrib><description>This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2009.2022630</identifier><identifier>PMID: 20199907</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>AdaBoost.M2 ; Algorithms ; Artificial Intelligence ; Breast ; Breast Cyst - classification ; Breast Cyst - diagnostic imaging ; Breast neoplasms ; Breast Neoplasms - classification ; Breast Neoplasms - diagnostic imaging ; breast tumor ; Breast tumors ; Cancer ; Carcinoma - classification ; Carcinoma - diagnostic imaging ; Classifiers ; Databases, Factual ; differential diagnosis ; Discrimination ; Female ; Fibroadenoma - classification ; Fibroadenoma - diagnostic imaging ; Humans ; Image coding ; Image Interpretation, Computer-Assisted - methods ; K-distribution ; log-compressed K-distribution ; Malignant tumors ; Parameter estimation ; Reproducibility of Results ; Shape ; support vector machine (SVM) ; Support vector machine classification ; Support vector machines ; Tumors ; ultrasonic image ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonography, Mammary - methods</subject><ispartof>IEEE transactions on medical imaging, 2010-03, Vol.29 (3), p.598-609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fcdc938c9e7c4d24de27f1a019b0767f423e7aced826cf0606019c87cc7826363</citedby><cites>FETCH-LOGICAL-c488t-fcdc938c9e7c4d24de27f1a019b0767f423e7aced826cf0606019c87cc7826363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4967960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4967960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20199907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takemura, A.</creatorcontrib><creatorcontrib>Shimizu, A.</creatorcontrib><creatorcontrib>Hamamoto, K.</creatorcontrib><title>Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.</description><subject>AdaBoost.M2</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast</subject><subject>Breast Cyst - classification</subject><subject>Breast Cyst - diagnostic imaging</subject><subject>Breast neoplasms</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>breast tumor</subject><subject>Breast tumors</subject><subject>Cancer</subject><subject>Carcinoma - classification</subject><subject>Carcinoma - diagnostic imaging</subject><subject>Classifiers</subject><subject>Databases, Factual</subject><subject>differential diagnosis</subject><subject>Discrimination</subject><subject>Female</subject><subject>Fibroadenoma - classification</subject><subject>Fibroadenoma - diagnostic imaging</subject><subject>Humans</subject><subject>Image coding</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>K-distribution</subject><subject>log-compressed K-distribution</subject><subject>Malignant tumors</subject><subject>Parameter estimation</subject><subject>Reproducibility of Results</subject><subject>Shape</subject><subject>support vector machine (SVM)</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>ultrasonic image</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography, Mammary - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkk1vEzEQhi0EoqFwR0JCFhdOKeOP9ccxCW2JVMSBRHBbOd7Z1NXuuti7B_4BPxtHSXvgUmRpLI2feUeeeQl5y-CCMbCfNl_XFxzAlsC5EvCMzFhVmTmv5M_nZAZcmzmA4mfkVc53AExWYF-SMw7MWgt6Rv58Dtmn0IfBjSEONLZ0mdDlkW6mPqZMw0C33ZhcjkPwdN27PWa6zWHYUzfQyyFjv-uQrjqXc2gDJrp0GRtatMZbpIvGLWMscotuH1MYb3v6o0R6hW6cEtLv2KE_dH5NXrSuy_jmdJ-T7dXlZvVlfvPter1a3My9NGact77xVhhvUXvZcNkg1y1z5T870Eq3kgvUzmNjuPItqHKY9UZ7r0tGKHFOPh5171P8NWEe675MALvODRinXBultVTK6CfJgoGWlZL_QQpVWaPM06QQZbHGQiE__EPexSkNZTS1KT0rwZQtEBwhn2LOCdv6vuzSpd81g_rgkLo4pD44pD45pJS8P-lOux6bx4IHSxTg3REIiPj4LK3SVoH4CxTGvtM</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Takemura, A.</creator><creator>Shimizu, A.</creator><creator>Hamamoto, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201003</creationdate><title>Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection</title><author>Takemura, A. ; Shimizu, A. ; Hamamoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fcdc938c9e7c4d24de27f1a019b0767f423e7aced826cf0606019c87cc7826363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>AdaBoost.M2</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast</topic><topic>Breast Cyst - classification</topic><topic>Breast Cyst - diagnostic imaging</topic><topic>Breast neoplasms</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>breast tumor</topic><topic>Breast tumors</topic><topic>Cancer</topic><topic>Carcinoma - classification</topic><topic>Carcinoma - diagnostic imaging</topic><topic>Classifiers</topic><topic>Databases, Factual</topic><topic>differential diagnosis</topic><topic>Discrimination</topic><topic>Female</topic><topic>Fibroadenoma - classification</topic><topic>Fibroadenoma - diagnostic imaging</topic><topic>Humans</topic><topic>Image coding</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>K-distribution</topic><topic>log-compressed K-distribution</topic><topic>Malignant tumors</topic><topic>Parameter estimation</topic><topic>Reproducibility of Results</topic><topic>Shape</topic><topic>support vector machine (SVM)</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>ultrasonic image</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography, Mammary - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Takemura, A.</creatorcontrib><creatorcontrib>Shimizu, A.</creatorcontrib><creatorcontrib>Hamamoto, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takemura, A.</au><au>Shimizu, A.</au><au>Hamamoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2010-03</date><risdate>2010</risdate><volume>29</volume><issue>3</issue><spage>598</spage><epage>609</epage><pages>598-609</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20199907</pmid><doi>10.1109/TMI.2009.2022630</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2010-03, Vol.29 (3), p.598-609 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_743659868 |
source | IEEE Electronic Library (IEL) |
subjects | AdaBoost.M2 Algorithms Artificial Intelligence Breast Breast Cyst - classification Breast Cyst - diagnostic imaging Breast neoplasms Breast Neoplasms - classification Breast Neoplasms - diagnostic imaging breast tumor Breast tumors Cancer Carcinoma - classification Carcinoma - diagnostic imaging Classifiers Databases, Factual differential diagnosis Discrimination Female Fibroadenoma - classification Fibroadenoma - diagnostic imaging Humans Image coding Image Interpretation, Computer-Assisted - methods K-distribution log-compressed K-distribution Malignant tumors Parameter estimation Reproducibility of Results Shape support vector machine (SVM) Support vector machine classification Support vector machines Tumors ultrasonic image Ultrasonic imaging Ultrasonic testing Ultrasonography, Mammary - methods |
title | Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20Breast%20Tumors%20in%20Ultrasonic%20Images%20Using%20an%20Ensemble%20Classifier%20Based%20on%20the%20AdaBoost%20Algorithm%20With%20Feature%20Selection&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Takemura,%20A.&rft.date=2010-03&rft.volume=29&rft.issue=3&rft.spage=598&rft.epage=609&rft.pages=598-609&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2009.2022630&rft_dat=%3Cproquest_RIE%3E746074564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856453169&rft_id=info:pmid/20199907&rft_ieee_id=4967960&rfr_iscdi=true |