A comparison of zero-order, first order, and monod biotransformation models
Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assu...
Gespeichert in:
Veröffentlicht in: | Ground Water 1998-03, Vol.36 (2), p.261-268 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Ground Water |
container_volume | 36 |
creator | Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) Warren, E Godsy, E.M |
description | Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set |
doi_str_mv | 10.1111/j.1745-6584.1998.tb01091.x |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_743653381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A20562243</galeid><sourcerecordid>A20562243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</originalsourceid><addsrcrecordid>eNqVkl-L1DAUxYsoOI5-BKHug75sx_xpk8YXGRcdZRcFnXXFl0uaJmtm22RMOjjrpzelwwqyKOY-hCS_c5JcTpYdYbTAaTzfLDAvq4JVdbnAQtSLoUEYCbzY38lmN0d3sxlCmBcl41_uZw9i3CCEqEBilp0uc-X7rQw2epd7k__UwRc-tDoc58aGOOSHhXRt3nvn27yxfgjSReNDLwebdL1vdRcfZveM7KJ-dJjn2fmb1-uTt8XZh9W7k-VZIRkhuNAS1Y3BqBSslIoZKUtVYyqIoE0qrgjjRIuGcC2VRpLxEivTqLZOX2lFTefZk8nXx8FCVHbQ6pvyzmk1QMU5pSgxzyZmG_z3nY4D9DYq3XXSab-LwEvKKkrTvfPs6V9JgmnFEEP_BDGjVFBGEnj0B7jxu-BSS4BQJlDJ-QgdT9Cl7DRYZ8aeqkvtdJCdd9rYtL0kqEo9K2nCi1vwVK3urbqNfzHxKvgYgzawDbaX4RowgjE6sIExHzDmA8bowCE6sE_il5P4RzK9_g8lrC6Wa8Lw7-faOOj9jYMMV8A45RVcvF_Bq9P1R0zZV_ic-McTb6QHeZnSCOefkjdHdS0Eob8A-X3huw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236904772</pqid></control><display><type>article</type><title>A comparison of zero-order, first order, and monod biotransformation models</title><source>Access via Wiley Online Library</source><creator>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</creator><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</creatorcontrib><description>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/j.1745-6584.1998.tb01091.x</identifier><identifier>CODEN: GRWAAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>02 PETROLEUM ; AEROBES ; AEROBIC CONDITIONS ; AEROBIOSIS ; AQUIFERS ; BACTERIA ; BENZENE ; BIODEGRADATION ; BIOREMEDIATION ; COMPARATIVE EVALUATIONS ; DATA COVARIANCES ; ENVIRONMENTAL SCIENCES ; ENVIRONMENTAL TRANSPORT ; EQUATIONS ; Groundwater ; GROUNDWATER POLLUTION ; GROUNDWATER TABLE ; IN-SITU PROCESSING ; KINETIC MODELS ; MATHEMATICAL MODELS ; MATHEMATICS ; MICROBIAL DEGRADATION ; MICROORGANISMS ; PHENOLIC COMPOUNDS ; REMEDIAL ACTION ; Statistical analysis ; TOLUENE ; XYLENE ; XYLENES</subject><ispartof>Ground Water, 1998-03, Vol.36 (2), p.261-268</ispartof><rights>COPYRIGHT 1998 National Ground Water Association</rights><rights>Copyright Ground Water Publishing Company Mar/Apr 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</citedby><cites>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-6584.1998.tb01091.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-6584.1998.tb01091.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/577330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creatorcontrib><creatorcontrib>Warren, E</creatorcontrib><creatorcontrib>Godsy, E.M</creatorcontrib><title>A comparison of zero-order, first order, and monod biotransformation models</title><title>Ground Water</title><description>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</description><subject>02 PETROLEUM</subject><subject>AEROBES</subject><subject>AEROBIC CONDITIONS</subject><subject>AEROBIOSIS</subject><subject>AQUIFERS</subject><subject>BACTERIA</subject><subject>BENZENE</subject><subject>BIODEGRADATION</subject><subject>BIOREMEDIATION</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>DATA COVARIANCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ENVIRONMENTAL TRANSPORT</subject><subject>EQUATIONS</subject><subject>Groundwater</subject><subject>GROUNDWATER POLLUTION</subject><subject>GROUNDWATER TABLE</subject><subject>IN-SITU PROCESSING</subject><subject>KINETIC MODELS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICS</subject><subject>MICROBIAL DEGRADATION</subject><subject>MICROORGANISMS</subject><subject>PHENOLIC COMPOUNDS</subject><subject>REMEDIAL ACTION</subject><subject>Statistical analysis</subject><subject>TOLUENE</subject><subject>XYLENE</subject><subject>XYLENES</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVkl-L1DAUxYsoOI5-BKHug75sx_xpk8YXGRcdZRcFnXXFl0uaJmtm22RMOjjrpzelwwqyKOY-hCS_c5JcTpYdYbTAaTzfLDAvq4JVdbnAQtSLoUEYCbzY38lmN0d3sxlCmBcl41_uZw9i3CCEqEBilp0uc-X7rQw2epd7k__UwRc-tDoc58aGOOSHhXRt3nvn27yxfgjSReNDLwebdL1vdRcfZveM7KJ-dJjn2fmb1-uTt8XZh9W7k-VZIRkhuNAS1Y3BqBSslIoZKUtVYyqIoE0qrgjjRIuGcC2VRpLxEivTqLZOX2lFTefZk8nXx8FCVHbQ6pvyzmk1QMU5pSgxzyZmG_z3nY4D9DYq3XXSab-LwEvKKkrTvfPs6V9JgmnFEEP_BDGjVFBGEnj0B7jxu-BSS4BQJlDJ-QgdT9Cl7DRYZ8aeqkvtdJCdd9rYtL0kqEo9K2nCi1vwVK3urbqNfzHxKvgYgzawDbaX4RowgjE6sIExHzDmA8bowCE6sE_il5P4RzK9_g8lrC6Wa8Lw7-faOOj9jYMMV8A45RVcvF_Bq9P1R0zZV_ic-McTb6QHeZnSCOefkjdHdS0Eob8A-X3huw</recordid><startdate>199803</startdate><enddate>199803</enddate><creator>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creator><creator>Warren, E</creator><creator>Godsy, E.M</creator><general>Blackwell Publishing Ltd</general><general>National Ground Water Association</general><general>Ground Water Publishing Company</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>199803</creationdate><title>A comparison of zero-order, first order, and monod biotransformation models</title><author>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>02 PETROLEUM</topic><topic>AEROBES</topic><topic>AEROBIC CONDITIONS</topic><topic>AEROBIOSIS</topic><topic>AQUIFERS</topic><topic>BACTERIA</topic><topic>BENZENE</topic><topic>BIODEGRADATION</topic><topic>BIOREMEDIATION</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>DATA COVARIANCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ENVIRONMENTAL TRANSPORT</topic><topic>EQUATIONS</topic><topic>Groundwater</topic><topic>GROUNDWATER POLLUTION</topic><topic>GROUNDWATER TABLE</topic><topic>IN-SITU PROCESSING</topic><topic>KINETIC MODELS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICS</topic><topic>MICROBIAL DEGRADATION</topic><topic>MICROORGANISMS</topic><topic>PHENOLIC COMPOUNDS</topic><topic>REMEDIAL ACTION</topic><topic>Statistical analysis</topic><topic>TOLUENE</topic><topic>XYLENE</topic><topic>XYLENES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creatorcontrib><creatorcontrib>Warren, E</creatorcontrib><creatorcontrib>Godsy, E.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Ground Water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</au><au>Warren, E</au><au>Godsy, E.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of zero-order, first order, and monod biotransformation models</atitle><jtitle>Ground Water</jtitle><date>1998-03</date><risdate>1998</risdate><volume>36</volume><issue>2</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><coden>GRWAAP</coden><abstract>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-6584.1998.tb01091.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-467X |
ispartof | Ground Water, 1998-03, Vol.36 (2), p.261-268 |
issn | 0017-467X 1745-6584 |
language | eng |
recordid | cdi_proquest_miscellaneous_743653381 |
source | Access via Wiley Online Library |
subjects | 02 PETROLEUM AEROBES AEROBIC CONDITIONS AEROBIOSIS AQUIFERS BACTERIA BENZENE BIODEGRADATION BIOREMEDIATION COMPARATIVE EVALUATIONS DATA COVARIANCES ENVIRONMENTAL SCIENCES ENVIRONMENTAL TRANSPORT EQUATIONS Groundwater GROUNDWATER POLLUTION GROUNDWATER TABLE IN-SITU PROCESSING KINETIC MODELS MATHEMATICAL MODELS MATHEMATICS MICROBIAL DEGRADATION MICROORGANISMS PHENOLIC COMPOUNDS REMEDIAL ACTION Statistical analysis TOLUENE XYLENE XYLENES |
title | A comparison of zero-order, first order, and monod biotransformation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20zero-order,%20first%20order,%20and%20monod%20biotransformation%20models&rft.jtitle=Ground%20Water&rft.au=Bekins,%20B.A.%20(U.S.%20Geological%20Survey,%20Menlo%20Park,%20CA.)&rft.date=1998-03&rft.volume=36&rft.issue=2&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=0017-467X&rft.eissn=1745-6584&rft.coden=GRWAAP&rft_id=info:doi/10.1111/j.1745-6584.1998.tb01091.x&rft_dat=%3Cgale_osti_%3EA20562243%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236904772&rft_id=info:pmid/&rft_galeid=A20562243&rfr_iscdi=true |