A comparison of zero-order, first order, and monod biotransformation models

Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground Water 1998-03, Vol.36 (2), p.261-268
Hauptverfasser: Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.), Warren, E, Godsy, E.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 261
container_title Ground Water
container_volume 36
creator Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)
Warren, E
Godsy, E.M
description Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set
doi_str_mv 10.1111/j.1745-6584.1998.tb01091.x
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_743653381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A20562243</galeid><sourcerecordid>A20562243</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</originalsourceid><addsrcrecordid>eNqVkl-L1DAUxYsoOI5-BKHug75sx_xpk8YXGRcdZRcFnXXFl0uaJmtm22RMOjjrpzelwwqyKOY-hCS_c5JcTpYdYbTAaTzfLDAvq4JVdbnAQtSLoUEYCbzY38lmN0d3sxlCmBcl41_uZw9i3CCEqEBilp0uc-X7rQw2epd7k__UwRc-tDoc58aGOOSHhXRt3nvn27yxfgjSReNDLwebdL1vdRcfZveM7KJ-dJjn2fmb1-uTt8XZh9W7k-VZIRkhuNAS1Y3BqBSslIoZKUtVYyqIoE0qrgjjRIuGcC2VRpLxEivTqLZOX2lFTefZk8nXx8FCVHbQ6pvyzmk1QMU5pSgxzyZmG_z3nY4D9DYq3XXSab-LwEvKKkrTvfPs6V9JgmnFEEP_BDGjVFBGEnj0B7jxu-BSS4BQJlDJ-QgdT9Cl7DRYZ8aeqkvtdJCdd9rYtL0kqEo9K2nCi1vwVK3urbqNfzHxKvgYgzawDbaX4RowgjE6sIExHzDmA8bowCE6sE_il5P4RzK9_g8lrC6Wa8Lw7-faOOj9jYMMV8A45RVcvF_Bq9P1R0zZV_ic-McTb6QHeZnSCOefkjdHdS0Eob8A-X3huw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236904772</pqid></control><display><type>article</type><title>A comparison of zero-order, first order, and monod biotransformation models</title><source>Access via Wiley Online Library</source><creator>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</creator><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</creatorcontrib><description>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/j.1745-6584.1998.tb01091.x</identifier><identifier>CODEN: GRWAAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>02 PETROLEUM ; AEROBES ; AEROBIC CONDITIONS ; AEROBIOSIS ; AQUIFERS ; BACTERIA ; BENZENE ; BIODEGRADATION ; BIOREMEDIATION ; COMPARATIVE EVALUATIONS ; DATA COVARIANCES ; ENVIRONMENTAL SCIENCES ; ENVIRONMENTAL TRANSPORT ; EQUATIONS ; Groundwater ; GROUNDWATER POLLUTION ; GROUNDWATER TABLE ; IN-SITU PROCESSING ; KINETIC MODELS ; MATHEMATICAL MODELS ; MATHEMATICS ; MICROBIAL DEGRADATION ; MICROORGANISMS ; PHENOLIC COMPOUNDS ; REMEDIAL ACTION ; Statistical analysis ; TOLUENE ; XYLENE ; XYLENES</subject><ispartof>Ground Water, 1998-03, Vol.36 (2), p.261-268</ispartof><rights>COPYRIGHT 1998 National Ground Water Association</rights><rights>Copyright Ground Water Publishing Company Mar/Apr 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</citedby><cites>FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-6584.1998.tb01091.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-6584.1998.tb01091.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/577330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creatorcontrib><creatorcontrib>Warren, E</creatorcontrib><creatorcontrib>Godsy, E.M</creatorcontrib><title>A comparison of zero-order, first order, and monod biotransformation models</title><title>Ground Water</title><description>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</description><subject>02 PETROLEUM</subject><subject>AEROBES</subject><subject>AEROBIC CONDITIONS</subject><subject>AEROBIOSIS</subject><subject>AQUIFERS</subject><subject>BACTERIA</subject><subject>BENZENE</subject><subject>BIODEGRADATION</subject><subject>BIOREMEDIATION</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>DATA COVARIANCES</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ENVIRONMENTAL TRANSPORT</subject><subject>EQUATIONS</subject><subject>Groundwater</subject><subject>GROUNDWATER POLLUTION</subject><subject>GROUNDWATER TABLE</subject><subject>IN-SITU PROCESSING</subject><subject>KINETIC MODELS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICS</subject><subject>MICROBIAL DEGRADATION</subject><subject>MICROORGANISMS</subject><subject>PHENOLIC COMPOUNDS</subject><subject>REMEDIAL ACTION</subject><subject>Statistical analysis</subject><subject>TOLUENE</subject><subject>XYLENE</subject><subject>XYLENES</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVkl-L1DAUxYsoOI5-BKHug75sx_xpk8YXGRcdZRcFnXXFl0uaJmtm22RMOjjrpzelwwqyKOY-hCS_c5JcTpYdYbTAaTzfLDAvq4JVdbnAQtSLoUEYCbzY38lmN0d3sxlCmBcl41_uZw9i3CCEqEBilp0uc-X7rQw2epd7k__UwRc-tDoc58aGOOSHhXRt3nvn27yxfgjSReNDLwebdL1vdRcfZveM7KJ-dJjn2fmb1-uTt8XZh9W7k-VZIRkhuNAS1Y3BqBSslIoZKUtVYyqIoE0qrgjjRIuGcC2VRpLxEivTqLZOX2lFTefZk8nXx8FCVHbQ6pvyzmk1QMU5pSgxzyZmG_z3nY4D9DYq3XXSab-LwEvKKkrTvfPs6V9JgmnFEEP_BDGjVFBGEnj0B7jxu-BSS4BQJlDJ-QgdT9Cl7DRYZ8aeqkvtdJCdd9rYtL0kqEo9K2nCi1vwVK3urbqNfzHxKvgYgzawDbaX4RowgjE6sIExHzDmA8bowCE6sE_il5P4RzK9_g8lrC6Wa8Lw7-faOOj9jYMMV8A45RVcvF_Bq9P1R0zZV_ic-McTb6QHeZnSCOefkjdHdS0Eob8A-X3huw</recordid><startdate>199803</startdate><enddate>199803</enddate><creator>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creator><creator>Warren, E</creator><creator>Godsy, E.M</creator><general>Blackwell Publishing Ltd</general><general>National Ground Water Association</general><general>Ground Water Publishing Company</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>199803</creationdate><title>A comparison of zero-order, first order, and monod biotransformation models</title><author>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.) ; Warren, E ; Godsy, E.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6221-ea08bf104964ac6faa4c8139293b3b37c2672e9b27eace0a6741cfbcd8584d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>02 PETROLEUM</topic><topic>AEROBES</topic><topic>AEROBIC CONDITIONS</topic><topic>AEROBIOSIS</topic><topic>AQUIFERS</topic><topic>BACTERIA</topic><topic>BENZENE</topic><topic>BIODEGRADATION</topic><topic>BIOREMEDIATION</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>DATA COVARIANCES</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ENVIRONMENTAL TRANSPORT</topic><topic>EQUATIONS</topic><topic>Groundwater</topic><topic>GROUNDWATER POLLUTION</topic><topic>GROUNDWATER TABLE</topic><topic>IN-SITU PROCESSING</topic><topic>KINETIC MODELS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICS</topic><topic>MICROBIAL DEGRADATION</topic><topic>MICROORGANISMS</topic><topic>PHENOLIC COMPOUNDS</topic><topic>REMEDIAL ACTION</topic><topic>Statistical analysis</topic><topic>TOLUENE</topic><topic>XYLENE</topic><topic>XYLENES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</creatorcontrib><creatorcontrib>Warren, E</creatorcontrib><creatorcontrib>Godsy, E.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Ground Water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekins, B.A. (U.S. Geological Survey, Menlo Park, CA.)</au><au>Warren, E</au><au>Godsy, E.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of zero-order, first order, and monod biotransformation models</atitle><jtitle>Ground Water</jtitle><date>1998-03</date><risdate>1998</risdate><volume>36</volume><issue>2</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><coden>GRWAAP</coden><abstract>Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(S), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(S)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(S), it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K(S) for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-6584.1998.tb01091.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground Water, 1998-03, Vol.36 (2), p.261-268
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_743653381
source Access via Wiley Online Library
subjects 02 PETROLEUM
AEROBES
AEROBIC CONDITIONS
AEROBIOSIS
AQUIFERS
BACTERIA
BENZENE
BIODEGRADATION
BIOREMEDIATION
COMPARATIVE EVALUATIONS
DATA COVARIANCES
ENVIRONMENTAL SCIENCES
ENVIRONMENTAL TRANSPORT
EQUATIONS
Groundwater
GROUNDWATER POLLUTION
GROUNDWATER TABLE
IN-SITU PROCESSING
KINETIC MODELS
MATHEMATICAL MODELS
MATHEMATICS
MICROBIAL DEGRADATION
MICROORGANISMS
PHENOLIC COMPOUNDS
REMEDIAL ACTION
Statistical analysis
TOLUENE
XYLENE
XYLENES
title A comparison of zero-order, first order, and monod biotransformation models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20zero-order,%20first%20order,%20and%20monod%20biotransformation%20models&rft.jtitle=Ground%20Water&rft.au=Bekins,%20B.A.%20(U.S.%20Geological%20Survey,%20Menlo%20Park,%20CA.)&rft.date=1998-03&rft.volume=36&rft.issue=2&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=0017-467X&rft.eissn=1745-6584&rft.coden=GRWAAP&rft_id=info:doi/10.1111/j.1745-6584.1998.tb01091.x&rft_dat=%3Cgale_osti_%3EA20562243%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236904772&rft_id=info:pmid/&rft_galeid=A20562243&rfr_iscdi=true