Computing the block factorization of complex Hankel matrices
In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization...
Gespeichert in:
Veröffentlicht in: | Computing 2010-05, Vol.87 (3-4), p.169-186 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 3-4 |
container_start_page | 169 |
container_title | Computing |
container_volume | 87 |
creator | Belhaj, Skander |
description | In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization of complex Hankel matrices via Schur complementation. An application of our algorithm by calculating the approximate polynomial quotient and remainder appearing in the Euclidean algorithm is also given. We have implemented our algorithms in Matlab. Numerical examples are included. They show the effectiveness of our strategy. |
doi_str_mv | 10.1007/s00607-010-0080-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743653172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014899131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-eb43af85dd8b282ddbf8f55c17281074926365c788868799c132f5e9b70448ab3</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKcfwFsRxFP1JWmaFLzImE4YeFHwFtI0md3aZiYtqJ_ejA4RwdM7vN__x3t_hM4xXGMAfhMAcuApYEgBBKTsAE1wRvOUAeOHaAK7TSbY6zE6CWENAISKYoJuZ67dDn3drZL-zSRl4_QmsUr3ztdfqq9dlzib6Ag15iNZqG5jmqRVva-1CafoyKommLP9nKKX-_nzbJEunx4eZ3fLVFPO-9SUGVVWsKoSJRGkqkorLGMacyIw8KwgOc2Z5kKIXPCi0JgSy0xRcsgyoUo6RVejd-vd-2BCL9s6aNM0qjNuCJLHRxmNukhe_CHXbvBdPE7igkU9xjhCeIS0dyF4Y-XW163ynxKD3LUpxzZl7Ezu2pQsZi73YhW0aqxXna7DT5CQIoP4RuTIyIW46lbG_zrgX_k3tgqCeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195868111</pqid></control><display><type>article</type><title>Computing the block factorization of complex Hankel matrices</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Belhaj, Skander</creator><creatorcontrib>Belhaj, Skander</creatorcontrib><description>In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization of complex Hankel matrices via Schur complementation. An application of our algorithm by calculating the approximate polynomial quotient and remainder appearing in the Euclidean algorithm is also given. We have implemented our algorithms in Matlab. Numerical examples are included. They show the effectiveness of our strategy.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-010-0080-5</identifier><identifier>CODEN: CMPTA2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial Intelligence ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Functional analysis ; Information Systems Applications (incl.Internet) ; Mathematical analysis ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Original Article ; Sciences and techniques of general use ; Software Engineering ; Studies ; Theoretical computing</subject><ispartof>Computing, 2010-05, Vol.87 (3-4), p.169-186</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-eb43af85dd8b282ddbf8f55c17281074926365c788868799c132f5e9b70448ab3</citedby><cites>FETCH-LOGICAL-c377t-eb43af85dd8b282ddbf8f55c17281074926365c788868799c132f5e9b70448ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-010-0080-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-010-0080-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22940263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Belhaj, Skander</creatorcontrib><title>Computing the block factorization of complex Hankel matrices</title><title>Computing</title><addtitle>Computing</addtitle><description>In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization of complex Hankel matrices via Schur complementation. An application of our algorithm by calculating the approximate polynomial quotient and remainder appearing in the Euclidean algorithm is also given. We have implemented our algorithms in Matlab. Numerical examples are included. They show the effectiveness of our strategy.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Original Article</subject><subject>Sciences and techniques of general use</subject><subject>Software Engineering</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLwzAUx4MoOKcfwFsRxFP1JWmaFLzImE4YeFHwFtI0md3aZiYtqJ_ejA4RwdM7vN__x3t_hM4xXGMAfhMAcuApYEgBBKTsAE1wRvOUAeOHaAK7TSbY6zE6CWENAISKYoJuZ67dDn3drZL-zSRl4_QmsUr3ztdfqq9dlzib6Ag15iNZqG5jmqRVva-1CafoyKommLP9nKKX-_nzbJEunx4eZ3fLVFPO-9SUGVVWsKoSJRGkqkorLGMacyIw8KwgOc2Z5kKIXPCi0JgSy0xRcsgyoUo6RVejd-vd-2BCL9s6aNM0qjNuCJLHRxmNukhe_CHXbvBdPE7igkU9xjhCeIS0dyF4Y-XW163ynxKD3LUpxzZl7Ezu2pQsZi73YhW0aqxXna7DT5CQIoP4RuTIyIW46lbG_zrgX_k3tgqCeg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Belhaj, Skander</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20100501</creationdate><title>Computing the block factorization of complex Hankel matrices</title><author>Belhaj, Skander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-eb43af85dd8b282ddbf8f55c17281074926365c788868799c132f5e9b70448ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Original Article</topic><topic>Sciences and techniques of general use</topic><topic>Software Engineering</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belhaj, Skander</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belhaj, Skander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing the block factorization of complex Hankel matrices</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>87</volume><issue>3-4</issue><spage>169</spage><epage>186</epage><pages>169-186</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><coden>CMPTA2</coden><abstract>In this paper, we present an algorithm for finding an approximate block diagonalization of complex Hankel matrices. Our method is based on inversion techniques of an upper triangular Toeplitz matrix, specifically, by simple forward substitution. We also consider an approximate block diagonalization of complex Hankel matrices via Schur complementation. An application of our algorithm by calculating the approximate polynomial quotient and remainder appearing in the Euclidean algorithm is also given. We have implemented our algorithms in Matlab. Numerical examples are included. They show the effectiveness of our strategy.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-010-0080-5</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2010-05, Vol.87 (3-4), p.169-186 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_miscellaneous_743653172 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial Intelligence Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Computer science control theory systems Exact sciences and technology Functional analysis Information Systems Applications (incl.Internet) Mathematical analysis Mathematical models Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis Numerical analysis. Scientific computation Original Article Sciences and techniques of general use Software Engineering Studies Theoretical computing |
title | Computing the block factorization of complex Hankel matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20the%20block%20factorization%20of%20complex%20Hankel%20matrices&rft.jtitle=Computing&rft.au=Belhaj,%20Skander&rft.date=2010-05-01&rft.volume=87&rft.issue=3-4&rft.spage=169&rft.epage=186&rft.pages=169-186&rft.issn=0010-485X&rft.eissn=1436-5057&rft.coden=CMPTA2&rft_id=info:doi/10.1007/s00607-010-0080-5&rft_dat=%3Cproquest_cross%3E2014899131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195868111&rft_id=info:pmid/&rfr_iscdi=true |